Dossier: Post Combustion CO2 Capture
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 6, November-December 2014
Dossier: Post Combustion CO2 Capture
Page(s) 989 - 1003
Section Environment & Sustainable Development
Publié en ligne 6 août 2013
  • Raynal L., Bouillon P.A., Gomez A., Broutin P. (2011) From MEA to demixing solvents and future steps, a roadmap for lowering the cost of post-combustion carbon capture, Chem. Eng. J. 171, 3, 742–752. [CrossRef] [Google Scholar]
  • Knudsen J.N., Jensen P.J., Vilhelmsen P.J., Biede O. (2009) Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents, Energy Procedia 1, 783–790. [CrossRef] [Google Scholar]
  • Serna-Guerrero R., Belmabkhout Y., Sayari A. (2010) Further investigations of CO2 capture using triamine-grafted poreexpanded mesoporous silica, Chem. Eng. J. 158, 3, 513–519. [CrossRef] [Google Scholar]
  • Serna-Guerrero R., Belmabkhout Y., Sayari A. (2010) Triaminegrafted pore-expanded mesoporous silica for CO2 capture: Effect of moisture and adsorbent regeneration strategies, Adsorption 16, 6, 567–575. [CrossRef] [Google Scholar]
  • Belmabkhout Y., Sayari A. (2010) Isothermal versus Nonisothermal Adsorption-Desorption Cycling of Triamine-Grafted Pore-Expanded MCM-41 Mesoporous Silica for CO2 Capture from Flue Gas, Energy Fuels 24, 5273–5280. [CrossRef] [Google Scholar]
  • Drese J.H., Choi S., Lively R.P., Koros W.J., Fauth D.J., Gray M.L., Jones C.W. (2009) Synthesis-Structure-Property Relationships for Hyperbranched Aminosilica CO2 Adsorbents, Adv. Funct. Mater. 19, 23, 3821–3832. [CrossRef] [Google Scholar]
  • Ebner A.D., Gray M.L., Chisholm N.G., Black Q.T., Mumford D.D., Nicholson M.A., Ritter J.A. (2011) Suitability of a Solid Amine Sorbent for CO2 Capture by Pressure Swing Adsorption, Ind. Eng. Chem. Res. 50, 9, 5634–5641. [CrossRef] [Google Scholar]
  • Li B., Jiang B., Fauth D.J., Gray M.L., Pennline H.W., Richards G.A. (2011) Innovative nano-layered solid sorbents for CO2 capture, Chem. Commun. 47, 6, 1719–1721. [CrossRef] [Google Scholar]
  • Gray M.L., Hoffman J.S., Hreha D.C., Fauth D.J., Hedges S.W., Champagne K.J., Pennline H.W. (2009) Parametric Study of Solid Amine Sorbents for the Capture of Carbon Dioxide, Energy Fuels 23, 4840–4844. [CrossRef] [Google Scholar]
  • Jones C.W., Maginn E.J. (2010) Materials and Processes for Carbon Capture and Sequestration, Chemsuschem. 3, 8, 863–864. [CrossRef] [PubMed] [Google Scholar]
  • Hiyoshi N., Yogo K., Yashima T. (2005) Adsorption characteristics of carbon dioxide on organically functionalized SBA-15, Micropor. Mesopor. Mater. 84, 1-3, 357–365. [CrossRef] [Google Scholar]
  • Gray M.L., Champagne K.J., Fauth D., Baltrus J.P., Pennline H. (2008) Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide, Int. J. Greenhouse Gas Control 2, 1, 3–8. [CrossRef] [Google Scholar]
  • Sircar S., Golden T.C. (1995) Isothermal and Isobaric Desorption of Carbon-Dioxide by Purge, Ind. Eng. Chem. Res. 34, 8, 2881–2888. [CrossRef] [Google Scholar]
  • Kim J.-N., Chue K.-T., Kim K.I., Cho S.-H., Kim J.-D. (1994) Non-isothermal Adsorption of Nitrogen-Carbon Dioxide Mixture in a Fixed Bed of Zeolite-X, J. Chem. Eng. Japan 27, 45–51. [CrossRef] [Google Scholar]
  • Merel J., Clausse M., Meunier F. (2008) Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites, Ind. Eng. Chem. Res. 47, 1, 209–215. [CrossRef] [Google Scholar]
  • Liu J., Wang Y., Benin A.I., Jakubczak P., Willis R.R., Levan M.D. (2010) CO2/H2O Adsorption Equilibrium and Rates on Metal-Organic Frameworks: HKUST-1 and Ni/DOBDC, Langmuir 26, 17, 14301–14307. [CrossRef] [PubMed] [Google Scholar]
  • Li G., Xiao P., Webley P., Zhang J., Singh R., Marshall M. (2008) Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X, adsorption 14, 2-3, 415–422. [CrossRef] [Google Scholar]
  • Trzpit M., Soulard M., Patarin J., Desbiens N., Cailliez F., Boutin A., Demachy I., Fuchs A.H. (2007) The effect of local defects on water adsorption in silicalite-1 zeolite: A joint experimental and molecular simulation study, Langmuir 23, 20, 10131–10139. [CrossRef] [PubMed] [Google Scholar]
  • Dunne J.A., Mariwala R., Rao M., Sircar S., Gorte R.J., Myers A.L. (1996) Calorimetric heats of adsorption and adsorption isotherms.1. O2, N2, Ar, CO2, CH4, C2H6 and SF6 on silicalite, Langmuir 12, 24, 5888–5895. [CrossRef] [Google Scholar]
  • Palomino M., Corma A., Rey F., Valencia S. (2010) New Insights on CO2 – Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs, Langmuir 26, 3, 1910–1917. [CrossRef] [PubMed] [Google Scholar]
  • Chatelain T., Patarin J., Soulard M., Guth J.L., Schultz P. (1995) zeolites 15, 90. [CrossRef] [Google Scholar]
  • Belmabkhout Y., Pirngruber G., Jolimaitre E., Methivier A. (2007) A complete experimental approach for synthesis gas separation studies using static gravimetric and column breakthrough experiments, Adsorption 13, 3-4, 341–349. [CrossRef] [Google Scholar]
  • Dunne J.A., Rao M., Sircar S., Gorte R.J., Myers A.L. (1996) Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 zeolites, Langmuir 12, 24, 5896–5904. [CrossRef] [Google Scholar]
  • Li G., Xiao P., Webley P.A., Zhang J., Singh R. (2009) Competition of CO2/H2O in adsorption based CO2 capture, Energy Procedia 1, 1, 1123–1130. [CrossRef] [Google Scholar]
  • Zhang J., Webley P.A. (2008) Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption, Environ. Sci. Technol. 42, 2, 563–569. [CrossRef] [PubMed] [Google Scholar]
  • Zhang J., Webley P.A., Xiao P. (2008) Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas, Energy Convers. Manage. 49, 2, 346–356. [CrossRef] [Google Scholar]
  • Liu Z., Grande C.A., Li P., Yu J.G., Rodrigues A.E. (2011) Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas, Sep. Purifi. Technol. 81, 3, 307–317. [CrossRef] [Google Scholar]
  • Park J.H., Beum H.T., Kim J.N., Cho S.H. (2002) Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas, Ind. Eng. Chem. Res. 41, 16, 4122–4131. [CrossRef] [Google Scholar]
  • Chue K.T., Kim J.N., Yoo Y.J., Cho S.H., Yang R.T. (1995) Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue-Gas by Pressure Swing Adsorption, Ind. Eng. Chem. Res. 34, 2, 591–598. [CrossRef] [Google Scholar]
  • Na B.K., Lee H., Koo K.K., Song H.K. (2002) Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Ind. Eng. Chem. Res. 41, 22, 5498–5503. [CrossRef] [Google Scholar]
  • Dantas T.L.P., Luna F.M.T., Silva I.J., Torres A.E.B., de Azevedo D.C.S., Rodrigues A.E., Moreira R.F.P.M. (2011) Carbon dioxide-nitrogen separation through pressure swing adsorption, Chem. Eng. J. 172, 2-3, 698–704. [CrossRef] [Google Scholar]
  • Kikkinides E.S., Yang R.T., Cho S.H. (1993) Concentration and recovery of CO2 from flue-gas by pressure swing adsorption, Ind. Eng. Chem. Res. 32, 11, 2714–2720. [CrossRef] [Google Scholar]
  • Pirngruber G.D., Hamon L., Bourrelly S., Llewellyn P.L., Lenoir E., Guillerm V., Serre C., Devic T. (2012) A Method for Screening the Potential of MOFs as CO2 Adsorbents in Pressure Swing Adsorption Processes, Chemsuschem. 5, 4, 762–776. [CrossRef] [PubMed] [Google Scholar]
  • Liu Z., Wang L., Kong X., Li P., Yu J., Rodrigues A.E. (2012) Onsite CO2 Capture from Flue Gas by an Adsorption Process in a Coal-Fired Power Plant, Ind. Eng. Chem. Res. 51, 21, 7355–7363. [CrossRef] [Google Scholar]
  • Cho S.-H., Park J.H., Beum H.T., Han S.-S., Kim J.-N. (2004) A 2-stage PSA Process for the Recovery of CO2 from Flue Gas and its Power Consumption, Stud. Surf. Sci. Catal. 153, , 405–410. [CrossRef] [Google Scholar]
  • Lively R.P., Chance R.R., Koros W.J. (2010) Enabling Low-Cost CO2 Capture via Heat Integration, Ind. Eng. Chem. Res. 49, 16, 7550–7562. [CrossRef] [Google Scholar]
  • Lively R.P., Chance R.R., Kelley B.T., Deckman H.W., Drese J.H., Jones C.W., Koros W.J. (2009) Hollow Fiber Adsorbents for CO2 Removal from Flue Gas, Ind. Eng. Chem. Res. 48, 15, 7314–7324. [CrossRef] [Google Scholar]
  • Sivakumar S.V., Rao D.P. (2011) Modified Duplex PSA. 1. Sharp Separation and Process Intensification for CO2-N2-13X Zeolite System, Ind. Eng. Chem. Res. 50, 6, 3426–3436. [CrossRef] [Google Scholar]
  • Kearns D.T., Webley P.A. (2006) Modelling and evaluation of dual-reflux pressure swing adsorption cycles: Part I. Mathematical models, Chem. Eng. Sci. 61, 22, 7223–7233. [CrossRef] [Google Scholar]
  • Diagne D., Goto M., Hirose T. (1994) New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes – Application to Carbon-Dioxide Removal and Enrichment, J. Chem. Eng. Japan 27, 1, 85–89. [CrossRef] [Google Scholar]
  • Diagne D., Goto M., Hirose T. (1995) Parametric Studies on CO2 Separation and Recovery by a Dual Reflux PSA Process Consisting of Both Rectifying and Stripping Sections, Ind. Eng. Chem. Res. 34, 9, 3083–3089. [CrossRef] [Google Scholar]
  • Leinekugel-le-Cocq D., Tayakout-Fayolle M., Le Gorrec Y., Jallut C. (2007) A double linear driving force approximation for non-isothermal mass transfer modeling through bi-disperse adsorbents, Chem. Eng. Sci. 62, 15, 4040–4053. [CrossRef] [Google Scholar]
  • Farooq S., Ruthven D.M., Boniface H.A. (1989) Numerical simulation of a pressure swing adsorption oxygen unit, Chem. Eng. Sci. 44, 12, 2809–2816. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.