Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Numéro 4, July-August 2013
Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Page(s) 707 - 723
DOI https://doi.org/10.2516/ogst/2013175
Publié en ligne 23 octobre 2013
  • Demirbas A. (2007) Progress in Energy and Combustion Science 33, (1), 1-18. [Google Scholar]
  • Ballerini D. (2012) Biofuels - Meeting the energy and environmental challenges of the transportation sector, Editions Technip. [Google Scholar]
  • Higman C., van der Burgt M. (2008) Gasification, 2nd edition, Gulf Professional Publishing, Oxford. [Google Scholar]
  • Kohl A., Nielsen R. (1997) Gas Purification, Elsevier, Houston. [Google Scholar]
  • Ratnasamy C., Wagner J.P. (2009) Catalysis Reviews Science Engineering 51, (3), 325-440. [CrossRef] [Google Scholar]
  • Schulz H. (1999) Applied Catalysis A: General 186, (1-2), 3-12. [CrossRef] [Google Scholar]
  • Van der Laan G.P., Beenackers A.A.C.M. (1999) Catalysis Reviews Science Engineering 41, (3-4), 255-318. [Google Scholar]
  • Steynberg A., Dry M. (eds) (2004) Studies in Surface Science and Catalysis, Fischer-Tropsch Technology, Elsevier, Vol. 152. [Google Scholar]
  • Borg O., Hammer N., Enger B.C., Myrstad R., Lindvag O. A.E.S., Skagseth T.H., Rytter E. (2011) Journal Catalysis 279, (1), 163-173. [CrossRef] [Google Scholar]
  • Pansare S.S., Allison J.D. (2010) Applied Catalysis A: General 387, (1-2), 224-230. [CrossRef] [Google Scholar]
  • Torres W., Pansare S.S., Goodwin J.G. (2007) Catalysis Reviews 49, 407-456. [CrossRef] [Google Scholar]
  • Turk B.S., Merkel T., Lopez-Ortiz A., Gupta R.P., Portzer J.W., Kishman G., Freeman B.D., Fleming G.K. (2001) Novel technologies for gaseous contaminants control, Final report for DOE contract No. DE-AC26-99FT40675, US Department of Energy, National Energy Technology Laboratory. [Google Scholar]
  • Repellin V., Govin A., Rolland M., Guyonnet R. (2010) Biomass Bioenergy 34, (7), 923-930. [Google Scholar]
  • Alvarez-Rodriguez R., Clemente-Jul C., Martin-Rubi J.A. (2007) Fuel 86, (14), 2081-2089. [CrossRef] [Google Scholar]
  • Frandsen F., Damjohansen K., Rasmussen P. (1994) Progress Energy Combustion Science 20, (2), 115-138. [CrossRef] [Google Scholar]
  • Marin-Sanchez J.E., Rodriguez-Toral M.A. (2011) Industrial Engineering Chemistry Research 50, (5), 2628-2640. [CrossRef] [Google Scholar]
  • Nakano J., Kwong K.S., Bennett J., Lam T., Fernandez L., Komolwit P., Sridhar S. (2011) Energy Fuels 25, (7), 3298-3306. [CrossRef] [Google Scholar]
  • Van der Drift A., van Doom J., Vermeulen J.W. (2001) Biomass Bioenergy 20, (1), 45-56. [CrossRef] [Google Scholar]
  • Zevenhoven R., Kilpinen P. (2004) Control of pollutants in flue gases and fuel gases, e-book, Espoo/Turku, Finland. [Google Scholar]
  • Lee J.M., Baker J.J., Rolle J.G., Llerena R., Co A.J.E. (1998) Preprints ACS Division of Fuel Chemistry 43, (2), 271-277. [Google Scholar]
  • Refinery residue upgrading, Process Economics Program Report 228, IHS Chemical Technical Services (2000). [Google Scholar]
  • Vassilev S.V., Baxter D., Andersen L.K., Vassileva C.G. (2010) Fuel 89, (5), 913-933. [CrossRef] [Google Scholar]
  • Dupont C., Rongé S., Berthelot A., Da Silva Perez D., Graffin A., Labalette F., Laboulée C., Mithouard J.C., Pitocchi S. (2010) International Journal Chemical Reactor Engineering 8, (1), A74. [Google Scholar]
  • Bell D., Towler B. (2010) Coal gasification and its applications, Elsevier. [Google Scholar]
  • Van Paasen S.V.B., Cieplik M.K., Phokawat N.P. (2006) Gasification of non-woody biomass - Economic and technical perspectives of chlorine and sulphur removal from product gas, ECN-E-06-032, Energy research Centre of the Netherlands. [Google Scholar]
  • Kumar A., Jones D.D., Hanna M.A. (2009) Energies 2, (3), 556-581. [CrossRef] [Google Scholar]
  • Alauddin Z.A.B.Z., Lahijani P., Mohammadi M.M.A.R. (2010) Renewable Sustainable Energy Reviews 14, (9), 2852-2862. [Google Scholar]
  • Asadullah M., Miyazawa T., Ito S.I., Kunimori K., Yamada M., Tomishige K. (2004) Applied Catalysis A: General 267, (1-2), 95-102. [CrossRef] [Google Scholar]
  • Demirbas A. (2003) Energy Conversion Management 44, (9), 1465-1479. [CrossRef] [Google Scholar]
  • Leppalahti J. (1995) Fuel 74, (9), 1363-1368. [CrossRef] [Google Scholar]
  • Leppolahti J., Koljonen T. (1995) Fuel Processing Technology 43, (1), 1-45. [CrossRef] [Google Scholar]
  • Orikasa H., Tomita A. (2003) Energy Fuels 17, (6), 1536-1540. [CrossRef] [Google Scholar]
  • Dagaut P., Glarborg P., Alzueta M.U. (2008) Progress in Energy Combustion Science 34, (1), 1-46. [Google Scholar]
  • Zhou J., Masutani S.M., Ishimura D.M., Turn S.Q., Kinoshita C.M. (2000) Industrial Engineering Chemistry Research 39, (3), 626-634. [Google Scholar]
  • Blasing M., Melchior T., Müller M. (2011) Fuel Processing Technology 92, (3), 511-516. [CrossRef] [Google Scholar]
  • Henrich E. (2007) The status of the FZK concept of biomass gasification, Oral Communication, 2nd European Summer School on Renewable Motor Fuels, Warsaw, Poland, August 2007. [Google Scholar]
  • Kuramochi H., Wu W., Kawamoto K. (2005) Fuel 84, (4), 377-387. [CrossRef] [Google Scholar]
  • Turn S.Q. (2007) Industrial Engineering Chemistry Research 46, (26), 8928-8937. [CrossRef] [Google Scholar]
  • Yan N.Q., Qu Z., Chi Y., Qiao S.H., Dod R.L., Chang S. G., Miller C. (2009) Environmental Science Technology 43, (14), 5410-5415. [CrossRef] [Google Scholar]
  • Wilhelm S.M., Bloom N. (2000) Fuel Processing Technology 63, (1), 1-27. [Google Scholar]
  • Parsons Infrastructure and Technology Group Inc (2002) The cost of mercury removal in an IGCC plant, The US Department of Energy. [Google Scholar]
  • Salo K., Mojtahedi W. (1998) Biomass Bioenergy 15, (3), 263-267. [CrossRef] [Google Scholar]
  • Thy P., Jenkins B.M. (2010) Water Air Soil Pollution 209, (1-4), 429-437. [CrossRef] [Google Scholar]
  • Meister B.C., Williams R.B., Jenkins B.M. (2005) Utilization of waste renewable fuels in boilers with minimization of pollutant emissions, PIER Final report CEC-500-2005-134, California Energy Commission, Sacramento, California. [Google Scholar]
  • Mentz K., Pinkerton J., Louch J. (2005) Forest Products Journal 55, 46-50. [Google Scholar]
  • Demirbas A. (2005) Energy Sources 27, 1385-1396. [CrossRef] [Google Scholar]
  • Adler A., Verwijst T., Aronsson P. (2005) Biomass Bioenergy 28, (2), 102-113. [CrossRef] [Google Scholar]
  • Lu D., Granatstein D.L., Rose D.J. (2004) Industrial Engineering Chemistry Research 43, (17), 5400-5404. [CrossRef] [Google Scholar]
  • Braun C.F. (1974) Carbonyl formation in coal gasification plants - Interim report, FE224016. [Google Scholar]
  • Brynestad J. (1976) Iron and nickel carbonyl formation in steel pipes and its prevention: Literature survey, ORNLTM5499. [Google Scholar]
  • Inouye H., De Van J.H. (1979) Journal Materials Energy Systems 1, 52-60. [CrossRef] [Google Scholar]
  • Helble J.J., Mojtahedi W., Lyyranen J. (1996) Fuel 75, (8), 931-939. [CrossRef] [Google Scholar]
  • Thompson D., Argent B.B. (2002) Fuel 81, (5), 555-570. [CrossRef] [Google Scholar]
  • Froment K., Defoort F., Bertrand C., Seiler J.M., Berjonneau J., Poirier J. (2013) Fuel 107, 269-281. [CrossRef] [Google Scholar]
  • Tijmensen M.J.A., Faaij A.P.C., Hamelinc C.N., van Hardeveld M.R.N. (2002) Biomass and Bioenergy 23, (2), 129-152. [CrossRef] [Google Scholar]
  • Kinney G.T. (1975) Oil & Gas Journal 73, (37), 192. [Google Scholar]
  • Wilhelm S.M., Kirchgessner D.A. (2001) Mercury in petroleum and natural gas: estimation of emissions from production, processing and combustion; EPA-600/R-01-066 report, US Environmental Protection Agency. [Google Scholar]
  • Newby R.A., Smeltzer E.E., Lippert T.E., Slimaine R.B., Akpolat O.M., Pandya K., Lau F.S., Abbasian J., Williams B.E., Leppin D. (2001) Novel gas cleaning! condi tioning for integrated gasification combined cycle, DOE award number: DE-AC26-99FT40674; US Department of Energy, National Energy Technology Laboratory. [Google Scholar]
  • Boerrigter H., den Uil H., Calis H.P. (2003) Green Diesel from biomass via Fischer-Tropsch synthesis: new insights in gas cleaning and process design, CPL Press, Newbury, United Kingdom, pp. 371-383. [Google Scholar]
  • Korens N., Simbeck D.R., Wilhelm D.J. (2002) Process Screening Analysis of Alternative Gas Treating and Sulfur Removal for Gasification, SFA Pacific, Inc. [Google Scholar]
  • Liu K., Song C., Subramani V. (eds) (2010) Hydrogen and Syngas Production and Purification Technologies, John Wiley & Sons. [Google Scholar]
  • Kerestecioglu U., Haberle T. (2008) Handling of trace components for Rectisol Wash Units, Oral Communication, Washington DC, USA, 8th October 2008. [Google Scholar]
  • Barnes D.R. (1999) Reduction of heat stable salt formation in a monoethanolamine (MEA) CO2 removal system, Proceedings of the 49th Laurance Reid Gas Conditioning Conference, 72-89. [Google Scholar]
  • Echt W.I. (1997) Chemical Solvent-Based Processes for Acid Gas Removal in Gasification Applications, paper presented at Gasification Technology in Practice IChemE Conference, Milan, Italy, February 1997. [Google Scholar]
  • Survey and down-selection of Acid Gas Removal systems for the thermochemical conversion of biomass to ethanol with a detailed analysis of an MDEA system, NREL/SR-510050482 report, US Department of Energy, National Renewable Energy Laboratory (2011). [Google Scholar]
  • DECHEMA Corrosion Handbook (2008) Kreysa G., Schütze M. (eds), Revised and extended, 2nd ed., DECHEMA. [Google Scholar]
  • Westmoreland P.R., Harrison D.P. (1976) Environmental Science Technology 10, (7), 659-661. [CrossRef] [Google Scholar]
  • Ranade P.V., Harrison D.P. (1981) Chemical Engineering Science 36, (6), 1079-1089. [CrossRef] [Google Scholar]
  • Efthimiadis E.A., Sortichos S.V. (1993) Chemical Engineering Science 48, (5), 829-843. [CrossRef] [Google Scholar]
  • Efthimiadis E.A., Sortichos S.V. (1993) Chemical Engineering Science 48, (11), 1971-1984. [CrossRef] [Google Scholar]
  • Neveux L., Chiche D., Bazer-Bachi D., Favergeon L., Pijolat M. (2012) Chemical Engineering Journal 181-182, 508-515. [CrossRef] [Google Scholar]
  • Neveux L., Chiche D., Pérez-Pellitero J., Favergeon L., Gay A.S., Pijolat M. (2013) Physical Chemistry Chemical Physics 15, (5), 1532-1545. [CrossRef] [Google Scholar]
  • Bezverkhyy I., Skrzypski J., Safonova O., Bellat J.P. (2012) Journal Physical Chemistry C 116, (27), 14423-14430. [CrossRef] [Google Scholar]
  • Israelson G. (2004) Journal Materials Engineering Performance 13, (3), 282-286. [CrossRef] [Google Scholar]
  • Ullmann’s Encyclopedia of Industrial Chemistry (1985), 5th edition, John Wiley & Sons. [Google Scholar]
  • Novochinskii I.I., Song C.S., Ma X.L., Liu X.S., Shore L., Lampert J., Farrauto R.J. (2004) Energy Fuels 18, (2), 576-584. [CrossRef] [Google Scholar]
  • Liang M., Xu H., Xie K. (2007) Journal Natural Gas Chemistry 16, (2), 204-209. [CrossRef] [Google Scholar]
  • Samokhvalov A., Tatarchuk B.J. (2011) Physical Chemistry Chemical Physics 13, (8), 3197-3209. [CrossRef] [Google Scholar]
  • Pineda M., Fierro J.L.G., Palacios J.M., Cilleruelo C., Garcia E., Ibarra J.V. (1997) Applied Surface Science 119, (1-2), 1-10. [CrossRef] [Google Scholar]
  • Lew S., Sarofim A.F., Flytzani-Stephanopoulos M. (1992) Chemical Engineering Science 47, (6), 1421-1431. [CrossRef] [Google Scholar]
  • Lange J.P. (2001) Catalysis Today 64, (1-2), 3-8. [CrossRef] [Google Scholar]
  • Liu X.M., Lu G.Q., Yan Z.F., Beltramini J. (2003) Industrial Engineering Chemistry Research 42, (25), 6518-6530. [Google Scholar]
  • Watson S., Kimmitt R., Rhinesmith R.B. (2003) Oil Gas Journal 101, (36), 66-73. [Google Scholar]
  • Sattler M.L., Rosenberk R.S. (2006) Journal Air Waste Management Association 56, (2), 219-224. [CrossRef] [Google Scholar]
  • Sparks D.E., Morgan T., Patterson P.M., Tackett S.A., Morris E., Crocker M. (2008) Applied Catalysis B: Environmental 82, (3-4), 190-198. [CrossRef] [Google Scholar]
  • Toops T.J., Crocker M. (2008) Applied Catalysis B: Environmental 82, (3-4), 199-207. [CrossRef] [Google Scholar]
  • Huisman M. (1994) The hydrolysis of carbonyl sulfide, carbon disulfide and hydrogen cyanide on titania catalysts, PhD Thesis, Utrecht University, The Netherlands. [Google Scholar]
  • Svoronos P.D.N., Bruno T.J. (2002) Industrial Engineering Chemistry Research 41, (22), 5321-5336. [Google Scholar]
  • Aboulayt A., Mauge F., Hoggan P.E., Lavalley J.C. (1996) Catalysis Letters 39, (3-4), 213-218. [CrossRef] [Google Scholar]
  • Haffad D., Kameswari U., Bettahar M.M., Chambellan A., Lavalley J.C. (1997) Journal Catalysis 172, (1), 85-92. [CrossRef] [Google Scholar]
  • Tong S., Dal la Lana I.G., Chuang K.T. (1993) Canadian Journal Chemical Engineering 71, 392-400. [Google Scholar]
  • Tong S., Dal la Lana I.G., Chuang K.T. (1997) Industrial Engineering Chemistry Research 36, 4087-4093, [CrossRef] [Google Scholar]
  • Nickolov R.N., Mehandjiev D.R. (2004) Journal Colloid Interface Science 273, (1), 87-94. [CrossRef] [Google Scholar]
  • Terzic O.M., Krstic J., Popovic A., Dogovic N. (2005) Chemical Engineering Processing 44, (11), 1181-1187. [CrossRef] [Google Scholar]
  • Kotdawala R.R., Kazantzis N., Thompson R.W. (2008) Journal of Hazardous Materials 159, (1), 169-176. [CrossRef] [PubMed] [Google Scholar]
  • Naderi M., Pickett J.L., Brown D.R. (2002) Journal Materials Chemistry 12, 1086-1089. [CrossRef] [Google Scholar]
  • Chloride control in process stream, online Porocel Application Bulletin #9, porocel.com (2000). [Google Scholar]
  • Erfan M. (2011) Chloride removal in refineries, eptq.com, Vol. Catalysis. [Google Scholar]
  • Broadhurst P.V. (2003) Removal of chloride compounds, eptq.com, Vol. Q2. [Google Scholar]
  • Cousins M.J. (2008) Mercury removal, W008020250. [Google Scholar]
  • Cousins M.J., Young C.J., Logan R. (2009) Absorbents, W009101429. [Google Scholar]
  • Cameron C., Courty P., Boitiaux J.P., Varin P., Leger G. (1991) Method of eliminating mercury or arsenic from a fluid in the presence of a mercury and/or arsenic recovery mass, US5245106. [Google Scholar]
  • Nishino H., Tanizawa Y., Yamamoto T. (1983) Process for removal of mercury vapor and adsorbent therefor, US4500327. [Google Scholar]
  • Matviya T., Gebhard R., Greenbank M. (1985) Mercury adsorbent carbon molecular sieves and process for removing mercury vapor from gas streams, US4708853. [Google Scholar]
  • Sugier A., la Villa F. (1976) Process for removing mercury from a gas or a liquid by absorption on copper sulfide containing solid mass, US4094777. [Google Scholar]
  • Markovs J. (1988) Purification of fluid streams containing mercury, US4874525. [Google Scholar]
  • Bein T., Jacobs P.A. (1983) Journal Chemical Society-Faraday Transactions I 79, 1819-1831. [CrossRef] [Google Scholar]
  • Indu N.K., Hobert H., Weber I., Datka J. (1995) Zeolites 15, (8), 714-718. [CrossRef] [Google Scholar]
  • Golden T.C., Hsiung T.H., Snyder K.E. (1991) Industrial Engineering Chemistry Research 30, (3), 502-507. [CrossRef] [Google Scholar]
  • Eijkhoudt R., Smit C.J., Van Dillen A.J., Geus J.W. (1999) Preprints of Symposia - American Chemical Society, Division of Fuel Chemistry 44, (1), 119-123. [Google Scholar]
  • De Klerk A. (2011) Fischer-Tropsch refining, Wiley-VCH Verlag GmbH ed. [Google Scholar]
  • Layne A.W., Alvin M.A., Granite E., Pennline H.W., Siriwardane R.V., Keairns D., Newby R. (2007) Proceedings of the ASME International Mechanical Engineering Congress and Exposition 6, 397-407. [Google Scholar]
  • Quinn R., Dahl T.A., Diamond B.W., Toseland B.A. (2006) Industrial Engineering Chemistry Research 45, (18), 6272-6278. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.