Dossier: InMoTher 2012 - Industrial Use of Molecular Thermodynamics
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Numéro 2, March-April 2013
Dossier: InMoTher 2012 - Industrial Use of Molecular Thermodynamics
Page(s) 235 - 247
DOI https://doi.org/10.2516/ogst/2012035
Publié en ligne 28 mars 2013
  • Constantinou L., Gani R. (1994) New group contribution method for estimating properties of pure compounds, AICHE J. 40, 10, 1697-1709. [CrossRef] [Google Scholar]
  • Cordes W., Rarey J. (2002) A new method for the estimation of the normal boiling point of non-electrolyte organic compounds, Fluid Phase Equilib. 201, 2, 409-433. [CrossRef] [Google Scholar]
  • DIPPR Project 801 (2005/2008/2009) Design institute for physical property data/AIChE. [Google Scholar]
  • Dudani S.A. (1976) The distance-weighted k-nearest-neighbor rule, IEEE Trans. Syst. Man Cybern. SMC-6, 4, 325-327. [CrossRef] [Google Scholar]
  • Gani R., Harper P.M., Hostrup M. (2005) Automatic creation of missing groups through connectivity index for pure-component property prediction, Ind. Eng. Chem. Res. 44, 18, 7262-7269. [CrossRef] [Google Scholar]
  • Gmehling J. (2009) Present status and potential of group contribution methods for process development, J. Chem. Thermodyn. 41, 6, 731-747. [CrossRef] [Google Scholar]
  • Gonzàlez H.E., Abildskov J., Gani R., Rousseaux P., Bert B.L. (2007) A method for prediction of UNIFAC group interaction parameters, AIChE J. 53, 6, 1620-1632. [CrossRef] [Google Scholar]
  • Joback K.G., Reid R.C. (1987) Estimation of pure-component properties from group contributions, Chem. Eng. Commun. 57, 1-6, 233-243. [CrossRef] [Google Scholar]
  • Kang J.W., Diky V., Chirico R. D., Magee J. W., Muzny C.D., Abdulagatov I., Kazakov A.F., Frenkel M. (2011) A new method for evaluation of UNIFAC interaction parameters, Fluid Phase Equilib. 309, 1, 68-75. [CrossRef] [Google Scholar]
  • Katritzky A.R., Kuanar M., Slavov S., Hall C.D., Karelson M., Kahn I., Dobchev D.A. (2010) Quantitative correlation of physical and chemical properties with chemical structure: Utility for prediction, Chem. Rev. 110, 10, 5714-5789. [CrossRef] [PubMed] [Google Scholar]
  • Kolská Z., Petrus P. (2010) Tool for group contribution methods – computational fragmentation, Collect. Czech. Chem. Commun. 75, 4, 393-404. [CrossRef] [Google Scholar]
  • Marrero J., Gani R. (2001) Group-contribution based estimation of pure component properties, Fluid Phase Equilib. 183-184, 183-208. [CrossRef] [Google Scholar]
  • Marrero-Morejon J., Pardillo-Fontdevila E., Fernandez-Benitez S. (1999) Estimation of pure compound properties using group- interaction contributions, AICHE J. 45, 3, 615-621. [CrossRef] [Google Scholar]
  • Marrero-Morejón J., Pardillo-Fontdevila E. (2000) Estimation of liquid viscosity at ambient temperature of pure organic compounds by using group-interaction contributions, Chem. Eng. J. 79, 1, 69-72. [CrossRef] [Google Scholar]
  • Marrero-Morejon J., Pardillo-Fontdevila E. (1999) Estimation of hydrocarbon properties from group-interaction contributions, Chem. Eng. Commun. 176, 161-173. [CrossRef] [Google Scholar]
  • Mustaffa A.A., Kontogeorgis G.M., Gani R. (2011) Analysis and application of GCPlus models for property prediction of organic chemical systems, Fluid Phase Equilib. 302, 1-2, 274-283. [CrossRef] [Google Scholar]
  • Nannoolal Y., Rarey J., Ramjugernath D., Cordes W. (2004) Estimation of pure component properties: Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions, Fluid Phase Equilib. 226, 45-63. [CrossRef] [Google Scholar]
  • Peters F.T., Laube F.S., Sadowski G. (2012) Development of a group contribution method for polymers within the PC-SAFT model, Fluid Phase Equilib. 324, , 70-79. [CrossRef] [Google Scholar]
  • Poling B.E., Prausnitz J.M., O’Connell J.P. (2001) Properties of gases and liquids, Poling B.E., Prausnitz J.M., O’Connell J.P. (eds), 5th edition, McGraw-Hill. [Google Scholar]
  • Raymond J.W., Rogers T.N. (1999) Molecular structure disassembly program (MOSDAP): A chemical information model to automate structure-based physical property estimation, J. Chem. Inf. Comput. Sci. 39, 3, 463-474. [CrossRef] [Google Scholar]
  • Rowley J., Wilding W., Oscarson J., Rowley R. (2007) Rapid evaluation of prediction methods with DIPPR’s automated property prediction package, Int. J. Thermophys. 28, 3, 824-834. [CrossRef] [Google Scholar]
  • Soria T.M., Andreatta A.E., Pereda S., Bottini S.B. (2011) Thermodynamic modeling of phase equilibria in biorefineries, Fluid Phase Equilib. 302, 1-2, 1-9. [CrossRef] [Google Scholar]
  • Tochigi K., Yoshida K., Kurihara K., Ochi K., Murata J., Urata S., Otake K. (2002) Determination of ASOG parameters for selecting azeotropic mixtures containing hydrofluoroethers, Fluid Phase Equilib. 194-197, , 653-662. [CrossRef] [Google Scholar]
  • Vijande J., Piñeiro M.M., Legido J.L., Bessières D. (2010) Group- contribution method for the molecular parameters of the pc-saft equation of state taking into account the proximity effect. Application to nonassociated compounds, Ind. Eng. Chem. Res. 49, 19, 9394-9406. [CrossRef] [Google Scholar]
  • Wakeham W.A., Cholakov G.St., Stateva R.P. (2002) Liquid density and critical properties of hydrocarbons estimated from molecular structure, J. Chem. Eng. Data 47, 3, 559-570. [CrossRef] [Google Scholar]
  • Wang Q., Ma P., Wang C., Xia S. (2009) Position group contribution method for predicting the normal boiling point of organic compounds, Chinese J. Chem. Eng. 17, 2, 254-258. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.