Dossier: InMoTher 2012 - Industrial Use of Molecular Thermodynamics
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 2, March-April 2013
Dossier: InMoTher 2012 - Industrial Use of Molecular Thermodynamics
Page(s) 235 - 247
DOI https://doi.org/10.2516/ogst/2012035
Published online 28 March 2013
  • Constantinou L., Gani R. (1994) New group contribution method for estimating properties of pure compounds, AICHE J. 40, 10, 1697-1709. [CrossRef] [Google Scholar]
  • Cordes W., Rarey J. (2002) A new method for the estimation of the normal boiling point of non-electrolyte organic compounds, Fluid Phase Equilib. 201, 2, 409-433. [CrossRef] [Google Scholar]
  • DIPPR Project 801 (2005/2008/2009) Design institute for physical property data/AIChE. [Google Scholar]
  • Dudani S.A. (1976) The distance-weighted k-nearest-neighbor rule, IEEE Trans. Syst. Man Cybern. SMC-6, 4, 325-327. [CrossRef] [Google Scholar]
  • Gani R., Harper P.M., Hostrup M. (2005) Automatic creation of missing groups through connectivity index for pure-component property prediction, Ind. Eng. Chem. Res. 44, 18, 7262-7269. [CrossRef] [Google Scholar]
  • Gmehling J. (2009) Present status and potential of group contribution methods for process development, J. Chem. Thermodyn. 41, 6, 731-747. [CrossRef] [Google Scholar]
  • Gonzàlez H.E., Abildskov J., Gani R., Rousseaux P., Bert B.L. (2007) A method for prediction of UNIFAC group interaction parameters, AIChE J. 53, 6, 1620-1632. [CrossRef] [Google Scholar]
  • Joback K.G., Reid R.C. (1987) Estimation of pure-component properties from group contributions, Chem. Eng. Commun. 57, 1-6, 233-243. [CrossRef] [Google Scholar]
  • Kang J.W., Diky V., Chirico R. D., Magee J. W., Muzny C.D., Abdulagatov I., Kazakov A.F., Frenkel M. (2011) A new method for evaluation of UNIFAC interaction parameters, Fluid Phase Equilib. 309, 1, 68-75. [CrossRef] [Google Scholar]
  • Katritzky A.R., Kuanar M., Slavov S., Hall C.D., Karelson M., Kahn I., Dobchev D.A. (2010) Quantitative correlation of physical and chemical properties with chemical structure: Utility for prediction, Chem. Rev. 110, 10, 5714-5789. [CrossRef] [PubMed] [Google Scholar]
  • Kolská Z., Petrus P. (2010) Tool for group contribution methods – computational fragmentation, Collect. Czech. Chem. Commun. 75, 4, 393-404. [CrossRef] [Google Scholar]
  • Marrero J., Gani R. (2001) Group-contribution based estimation of pure component properties, Fluid Phase Equilib. 183-184, 183-208. [CrossRef] [Google Scholar]
  • Marrero-Morejon J., Pardillo-Fontdevila E., Fernandez-Benitez S. (1999) Estimation of pure compound properties using group- interaction contributions, AICHE J. 45, 3, 615-621. [CrossRef] [Google Scholar]
  • Marrero-Morejón J., Pardillo-Fontdevila E. (2000) Estimation of liquid viscosity at ambient temperature of pure organic compounds by using group-interaction contributions, Chem. Eng. J. 79, 1, 69-72. [CrossRef] [Google Scholar]
  • Marrero-Morejon J., Pardillo-Fontdevila E. (1999) Estimation of hydrocarbon properties from group-interaction contributions, Chem. Eng. Commun. 176, 161-173. [CrossRef] [Google Scholar]
  • Mustaffa A.A., Kontogeorgis G.M., Gani R. (2011) Analysis and application of GCPlus models for property prediction of organic chemical systems, Fluid Phase Equilib. 302, 1-2, 274-283. [CrossRef] [Google Scholar]
  • Nannoolal Y., Rarey J., Ramjugernath D., Cordes W. (2004) Estimation of pure component properties: Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions, Fluid Phase Equilib. 226, 45-63. [CrossRef] [Google Scholar]
  • Peters F.T., Laube F.S., Sadowski G. (2012) Development of a group contribution method for polymers within the PC-SAFT model, Fluid Phase Equilib. 324, , 70-79. [CrossRef] [Google Scholar]
  • Poling B.E., Prausnitz J.M., O’Connell J.P. (2001) Properties of gases and liquids, Poling B.E., Prausnitz J.M., O’Connell J.P. (eds), 5th edition, McGraw-Hill. [Google Scholar]
  • Raymond J.W., Rogers T.N. (1999) Molecular structure disassembly program (MOSDAP): A chemical information model to automate structure-based physical property estimation, J. Chem. Inf. Comput. Sci. 39, 3, 463-474. [CrossRef] [Google Scholar]
  • Rowley J., Wilding W., Oscarson J., Rowley R. (2007) Rapid evaluation of prediction methods with DIPPR’s automated property prediction package, Int. J. Thermophys. 28, 3, 824-834. [CrossRef] [Google Scholar]
  • Soria T.M., Andreatta A.E., Pereda S., Bottini S.B. (2011) Thermodynamic modeling of phase equilibria in biorefineries, Fluid Phase Equilib. 302, 1-2, 1-9. [CrossRef] [Google Scholar]
  • Tochigi K., Yoshida K., Kurihara K., Ochi K., Murata J., Urata S., Otake K. (2002) Determination of ASOG parameters for selecting azeotropic mixtures containing hydrofluoroethers, Fluid Phase Equilib. 194-197, , 653-662. [CrossRef] [Google Scholar]
  • Vijande J., Piñeiro M.M., Legido J.L., Bessières D. (2010) Group- contribution method for the molecular parameters of the pc-saft equation of state taking into account the proximity effect. Application to nonassociated compounds, Ind. Eng. Chem. Res. 49, 19, 9394-9406. [CrossRef] [Google Scholar]
  • Wakeham W.A., Cholakov G.St., Stateva R.P. (2002) Liquid density and critical properties of hydrocarbons estimated from molecular structure, J. Chem. Eng. Data 47, 3, 559-570. [CrossRef] [Google Scholar]
  • Wang Q., Ma P., Wang C., Xia S. (2009) Position group contribution method for predicting the normal boiling point of organic compounds, Chinese J. Chem. Eng. 17, 2, 254-258. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.