Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Numéro 3, May-June 2012
Page(s) 479 - 489
DOI https://doi.org/10.2516/ogst/2011130
Publié en ligne 3 mai 2012
  • Amsden AA. (1999) KIVA-3V release 2. Improvement to KIVA-3V, Los Alamos National Laboratory. LA-UR-99-915. [Google Scholar]
  • An S.G., Kim M.Y., Yoon S.H., Lee J.H., Lee C.S. (2007) Combustion and exhaust emission characteristics of DME in a common-rail diesel engine, Trans. KSAE 15, 2, 74-80. [Google Scholar]
  • Arcoumanis C., Bae C., Crookes R., Kinoshita E. (2008) The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines : A review, Fuel 87, 7, 1014-1030. [CrossRef] [Google Scholar]
  • Beale J.C., Reitz R.D. (1999) Modeling spray atomization Kelvin–Helmholtz/Rayleigh–Taylor hybrid model, Atomization Sprays 9, 623-650. [Google Scholar]
  • Curran H.J., Fischer S.L., Dryer F.L. (2000) The reaction kinetics of dimethyl ether. II : low temperature oxidation in flow reactors, Int. J. Chem. Kinet. 32, 741-759. [CrossRef] [Google Scholar]
  • Dagaut P., Boettner J.-C., Cathonnet M. (1996) Chemical kinetic study of dimethylether oxidation in a jet stirred reactor from 1 to 10 atm : experiments and kinetic modeling, Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, pp. 627-632. [Google Scholar]
  • Dagaut P., Daly C., Simmie J.M., Cathonnet M. (1998) The oxidation and ignition of dimethylether from low to high temperature (500-1600 K) : experiments and kinetic modeling, Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, pp. 361-369. [Google Scholar]
  • Elkelawy M., Zhang Y., Alm El-Din H., Yu J. (2008) Detailed simulation of liquid DME homogenization and combustion behaviors in HCCI engines, SAE paper 2008-01-1705. [Google Scholar]
  • Fischer S.L., Dryer F.L., Curran H.J. (2000) The reaction kinetics of dimethyl ether. I : high temperature pyrolysis and oxidation in flow reactors, Int. J. Chem. Kinet. 32, 713-740. [CrossRef] [Google Scholar]
  • Gui B., Chan T.L., Leung C.W., Xiao J., Wang H., Zhao L. (2004) Modeling study on the combustion and emissions characteristics of a light-duty DI diesel engine fueled with dimethyl ether (DME) using a detailed chemical kinetics mechanism, SAE paper 2004-01-1839. [Google Scholar]
  • Han Z., Reitz R.D. (1995) Turbulence modeling of internal combustion engines using RNG k-e models, Combust. Sci. Technol. 106, 267-295. [Google Scholar]
  • Jun L., Sato Y., Noda A. (2001) An experimental study on DME spray characteristics and evaporation processes in a high pressure chamber, SAE paper 2001-01-3635. [Google Scholar]
  • Jung G.S., Sung Y.H., Choi B.C., Lim M.T. (2009) Effects of mixture stratification on HCCI combustion of DME in a rapid compression and expansion machine, Int. J. Automotive Technol. 10, 1, 1-7. [CrossRef] [Google Scholar]
  • Kee R.J., Rupley F.M., Miller J.A. (1989) CHEMKIN-II : a fortran chemical kinetics package for the analyses of gas phase chemical kinetics, Sandia Report, SAND 89-8009. [Google Scholar]
  • Kim H., Cho S., Min K. (2003) Reduced chemical kinetic model of DME for HCCI combustion, SAE paper 2003-01-1822. [Google Scholar]
  • Kim H.J., Suh H.K., Park S.H., Lee C.S. (2008a) An experimental and numerical investigation of atomization characteristics of biodiesel, dimethyl ether, and biodiesel-ethanol blended fuel, Energ. Fuel. 22, 2091-2098. [CrossRef] [Google Scholar]
  • Kim H.J., Suh H.K., Lee C.S. (2008b) Numerical and experimental study on the comparison between diesel and dimethyl Ether (DME) spray behaviors according to combustion chamber shape, Energ. Fuel. 22, 2851-2860. [CrossRef] [Google Scholar]
  • Kim H.J., Ryu B.W., Lee C.S. (2008c) Modelling for investigation of combustion and emission characteristics in a high-speed directinjection diesel engine with light duty under various operating conditions, Proc. IMechE Part D : J. Automobile Engineering. 222, 2159-2170. [CrossRef] [Google Scholar]
  • Kim H.J., Park S.H., Suh H.K., Lee C.S. (2009) Atomization and evaporation characteristics of biodiesel and dimethyl ether compared to diesel fuel in a high-pressure injection system, Energ. Fuel. 23, 1734-1742. [Google Scholar]
  • Kim M.Y., Bang S.H., Lee C.S. (2007a) Experimental investigation of spray and combustion characteristics of dimethyl ether in a common- rail diesel engine, Energ. Fuel. 21, 793-800. [CrossRef] [Google Scholar]
  • Kim M.Y., Yoon S.H., Park K.H., Lee C.S. (2007b) Effect of multiple injection strategies on the emission characteristics of dimethyl ether (DME)-fueled compression ignition engine, Energ. Fuel. 21, 2673-2681. [CrossRef] [Google Scholar]
  • Kim M.Y., Yoon S.H., Ryu B.W., Lee C.S. (2008) Combustion and emission characteristics of DME as an alternative fuel for compression ignition engines with a high pressure injection system, Fuel 87, 2779-2786. [CrossRef] [Google Scholar]
  • Kong S.-C. (2007) A study of natural gas/DME combustion in HCCI engines using CFD with detailed chemical kinetics, Fuel 86, 1483-1489. [CrossRef] [Google Scholar]
  • Kong S.C., Sun Y., Reitz R.D. (2007) Modeling diesel spray flame lift-off, sooting tendency and NOx emissions using detailed chemistry with phenomenological soot model, J. Eng. Gas Turbine Power 129, 252-260. [CrossRef] [Google Scholar]
  • Konno M., Chen Z., Miki K. (2003) Computational and experimental study on the influence of formaldehyde on HCCI combustion fueled with dimethyl ether, SAE paper 2003-01-1826. [Google Scholar]
  • Mittal G., Chaos M., Sung C., Dryer F.L. (2008) Dimethyl ether autoignition in a rapid compression machine : Experiments and chemical kinetic modeling, Fuel Process. Technol. 89, 1244-1254. [CrossRef] [Google Scholar]
  • Mo C., Zhang Y., Shi Y., Han J., Sun H. (2007) Experimental and numerical study on emission in an HCCI engine operated with neat dimethyl ether, SAE paper 2007-01-1888. [Google Scholar]
  • O’Rourke P.J., Amsden A.A. (2000) A spray/wall interaction submodel for the KIVA-3 wall film model, SAE paper 2000-01-0271. [Google Scholar]
  • Park S.W., Reitz R.D. (2007) Numerical study on the low emission window of homogeneous charge compression ignition diesel combustion, Combust. Sci. Technol. 179, 2279-2307. [CrossRef] [Google Scholar]
  • Park S.W., Reitz R.D. (2009) Optimization of fuel/air mixture formation for stoichiometric diesel combustion using a 2-spray-angle group-hole nozzle, Fuel 88, 843-852. [CrossRef] [Google Scholar]
  • Patel A., Kong S.C., Reitz R.D. (2004) Development and validation of a reduced reaction mechanism for HCCI engine simulations, SAE paper 2004-01-0558. [Google Scholar]
  • Smith G.P., Golden D.M., Frenklach M., Moriarty N.W., Eiteneer B., Goldenberg M. et al. (2000) http://www.me.berkeley.edu/gri_mech/T1/textgreater. [Google Scholar]
  • Sidu X., Mingfa Y., Junfeng X. (2001) An experimental investigation on the spray characteristics of dimethyl ether(DME), SAE paper 2001-01-0142. [Google Scholar]
  • Sun Y., Reitz R.D. (2006) Modeling diesel engine NOx and soot reduction with optimized two-stage combustion, SAE paper 2006- 01-0027. [Google Scholar]
  • Teng H., McCandless J.C. (2005) Comparative study of characteristics of diesel-fuel and dimethyl-ether sprays in the engine, SAE paper 2005-01-1723. [Google Scholar]
  • Teng H., McCandless J.C., Schneyer J.B. (2001) Thermochemical characteristics of dimethyl ether-An alternative fuel for compression- ignition engines, SAE paper 2001-01-0154. [Google Scholar]
  • Teng H., McCandless J.C., Schneyer J.B. (2002) Viscosity and lubricity of (liquid) dimethyl Ether-An alternative fuel for compression- ignition engines, SAE paper 2002-01-0862. [Google Scholar]
  • Teng H., McCandless J.C., Schneyer J.B. (2003) Compression ignition delay (physical + chemical) of dimethyl ether-An alternative fuel for compression-ignition engines, SAE paper 2003-01-0759. [Google Scholar]
  • Teng H., McCandless J.C., Schneyer J.B. (2004) Thermodynamic properties of dimethyl ether-An alternative fuel for compressionignition engines, SAE paper 2004-01-0093. [Google Scholar]
  • Tsutsumi Y., Iijima A., Yoshida K., Shoji H., Lee J.T. (2009) HCCI comsbution characteristics during operation on DME and methane fuels, Int. J. Automotive Technol. 10, 6, 645-652. [CrossRef] [Google Scholar]
  • Yamada H., Sakanashi H., Choi N., Tezaki A. (2003) Simplified oxidation mechanism of DME applicable for compression ignition, SAE paper 2003-01-1819. [Google Scholar]
  • Yamada H., Suzaki K., Sakanashi H., Choi N., Tezaki A. (2005) Kinetic measurements in homogeneous charge compression of dimethyl ether : role of intermediate formaldehyde controlling chain branching in the low-temperature oxidation mechanism, Combust. Flame 140, 24-33. [CrossRef] [Google Scholar]
  • Zhang Y., Mo C., Sun H., Zhou S. (2007) Study on formaldehyde emission in a DME-fueled direct-injection diesel engine, SAE paper 2007-01-1909. [Google Scholar]
  • Zheng X.L., Lu T.F., Law C.K., Westbrook C.K., Curran H.J. (2005) Experimental and computational study of nonpremixed ignition of dimethyl ether in counterflow, Proc. Combust. Inst. 30, 1101-1109. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.