IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Numéro 2, March-April 2011
IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Page(s) 265 - 275
DOI https://doi.org/10.2516/ogst/2010025
Publié en ligne 12 avril 2011
  • Metz B., Davidson O., de Coninck H., Loos M., Meyer L. (2005) IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, Cambridge. [Google Scholar]
  • Damen K., van Troost M., Faaij A., Turkenburg W. (2006) A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies, Prog. Energ. Combust. 32, 2, 215-246. [CrossRef] [Google Scholar]
  • Hossain M.M., de Lasa H.I. (2008) Chemical-looping combustion (CLC) for inherent CO2 separations – a review, Chem. Eng. Sci. 63, 4433-4451. [CrossRef] [Google Scholar]
  • Richter H.J., Knoche K. (1983) Efficiency and costing, Second law analysis of processes, ACS symposium series 235, Washington DC. [Google Scholar]
  • Forero C.R., Gayan P., de Diego L.F., Abad A., Garcia-Labiano F., Adanez J. (2009) Syngas combustion in a 500 Wth Chemical- Looping Combustion system using an impregnated Cu-based oxygen carrier, Fuel Process. Technol. 90, 12, 1471-1779. [CrossRef] [Google Scholar]
  • de Diego L.F., Garcia-Labiano F., Gayan P., Celaya J., Palacios J.M., Adanez J. (2007) Operation of a 10 kWth chemical-looping combustor during 200 h with a CuO.Al2O3 oxygen carrier, Fuel 86, 1036-1045. [CrossRef] [Google Scholar]
  • Kolbitsch P., Proll T., Bolhar-Nordenkampf J., Hofbauer H. (2009) Design of a Chemical Looping Combustor using a Dual Circulating Fluidized Bed Reactor System, Chem. Eng. Technol. 32, 3, 398-403. [CrossRef] [Google Scholar]
  • Kronberger B., Johansson E., Loffler G., Mattisson T., Lyngfelt A., Hofbauer H. (2004) A Two-Compartment Fluidized Bed Reactor for CO2 Capture by Chemical-Looping Combustion, Chem. Eng. Technol. 27, 12, 1318-1326. [CrossRef] [Google Scholar]
  • Real Son Sung, Kim Sang Done, Lee Jea-Keun (2007) 2007 ECI Conference on the 12th International Conference on Fluidization - New Horizons in Fluidization Engineering, Vancouver, Canada. [Google Scholar]
  • Andrus H.E., Chiu J.H., Thibeault P.R., Brautsch A. (2009) The 34th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, Florida, USA. [Google Scholar]
  • Noorman S., van Sint Annaland M., Kuipers H. (2009) Packed Bed Reactor Technology for Chemical-Looping Combustion, Ind. Eng. Chem. Res. 46, 12, 4212-4220. [Google Scholar]
  • Noorman S. (2007) International Oxy-Combustion Research Network, Windsor, CT, USA. [Google Scholar]
  • Dahl Ivar M., Bakken E., Larring Y., Spjelkavik Aud I., Hakonsen Silje F., Blom R. (2009) On the development of novel reactor concepts for chemical looping combustion, Energy Procedia 1, 1513-1519. [CrossRef] [Google Scholar]
  • Lyngfelt A., Thunman H. (2005) Construction and 100 h of Operational Experience of A 10-kW Chemical Looping Combustor, in Carbon Dioxide Capture for Storage in Deep Geologic Formations, Thomas D.C., Benson S.M. (eds), Elsevier Ltd. [Google Scholar]
  • Ryu H.J., Jin G.T., Yi C.K. (2005) Demonstration of Inherent CO2 Separation and No NOx Emission in a 50 kW Chemical- Looping Combustor: Continuous Reduction and Oxidation Experiment, in Morris T., Gale J., Thambimuthu K. (eds), Elsevier Ltd. [Google Scholar]
  • Shen Laihong, Wu Jiahua, Gao Zhengping, Xiao Jun (2009) Reactivity deterioration of NiO/Al2O3 oxygen carrier for chemical looping combustion of coal in a 10 kWth reactor, Combust. Flame. [Google Scholar]
  • Proll T., Rupanovits K., Kolbitsch P., Bolhar-Nordenkampf J., Hofbauer H. (2009) Cold Flow Model Study on a Dual Circulating Fluidized Bed System for Chemical Looping Processes, Chem. Eng. Technol. 32, 3, 418-427. [CrossRef] [Google Scholar]
  • Kronberger B., Lyngfelt A., Lolffler G., Hofbauer H. (2005) Design and Fluid Dynamic Analysis of a Bench-Scale Combustion System with CO2 Separation-Chemical-Looping Combustion, Ind. Eng. Chem. Res. 44, 546-556. [CrossRef] [Google Scholar]
  • Gauthier T., Bayle J., Leroy P. (2000) FCC: Fluidization Phenomena and Technologies, Oil Gas Sci. Technol. - Rev. IFP 55, 2, 187-207. [CrossRef] [EDP Sciences] [Google Scholar]
  • Basu P., Butler J. (2009) Studies on the operation of loop-seal in circulating fluidized bed boilers, Appl. Energ. 86, 1723-1731. [CrossRef] [Google Scholar]
  • Basu P. (2006) Combustion and Gasification in Fluidized Beds, CRC Press, Taylor & Francis Group, Boca Raton. [Google Scholar]
  • Butler J.W., Basu P. (2007) 2007 ECI Conference on the 12th International Conference on Fluidization - New Horizons in Fluidization Engineering, Vancouver, Canada. [Google Scholar]
  • Gayan P., Abad A., Adanez J., de Diego L.F., Garcia-Labiano F. (2004) Reduction and oxidation kinetics of a copper-based oxygen carrier prepared by impregnation for chemical-looping combustion, Ind. Eng. Chem. Res. 43, 8168-8177. [Google Scholar]
  • Geldart D., Jones P. (1991) The behaviour of L-valve with granular solids, Powder Technol. 67, 163. [CrossRef] [Google Scholar]
  • Knowlton T.M., Hirsan I. (1997) Ninth Synthetic Pipeline Gas Symposium, Chicago, Illinois. [Google Scholar]
  • Smolders K., Baeyens J. (1995) The Operation of L-valve to Control Standpipe Flow, Adv. Powder Technol. 6, 03, 163. [Google Scholar]
  • Ergun S. (1952) Fluid flow through packed columns, Chem. Eng. Process. 48, 2, 89. [Google Scholar]
  • Basu P., Chen L. (2000) An Analysis of Loop Seal Operations in a Circulating Fluidized Bed, Trans IChemE 78, Part A. [Google Scholar]
  • Cheng L., Basu P. (1999) Effect of pressure on loop seal operation for a pressurized circulating fluidized bed, Powder Technol. 103, 203-211. [CrossRef] [Google Scholar]
  • Kim S.W., Namkung W., Kim S.D. (1999) Solid Flow Characteristics in Loop-Seal of a Circulating Fluidized Bed, Korean J. Chem. Eng. 16, 1, 82-88. [CrossRef] [Google Scholar]
  • Kim S.W., Kim S.D. (2002) Effects of particle properties on solids recycle in loop-seal of a circulating fluidized bed, Powder Technol. 124, 76-84. [CrossRef] [Google Scholar]
  • Kunii D., Levenspiel O. (1991) Fluidization Engineering, 2nd edition, Butterworth-Heinemann, Boston, US. [Google Scholar]
  • Haider A., Levenspiel O. (1989) Drag coefficient and terminal velocity of spherical and non spherical particles, Powder Technol. 58, 1, 63-70. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.