Open Access
Oil Gas Sci. Technol. – Rev. IFP
Volume 65, Numéro 2, March-April 2010
Page(s) 331 - 343
Publié en ligne 21 avril 2010
  • Rein M. (2002) Interactions between drops and hot surfaces, in Drop-Surface Interactions, Springer-Verlag, pp. 185-217. [Google Scholar]
  • Chaves H., Kubitzek A.M., Obermeier F. (1999) Dynamic processes occurring during the spreading of thin liquid films produced by drop impact on hot walls, Int. J. Heat Fluid Fl. 20, 5, 470-476. [CrossRef] [Google Scholar]
  • Bernardin J.D., Stebbins C.J., Mudawar I. (1996) Effects of surface roughness on water droplet impact history and heat transfer regimes, Int. J. Heat Mass Tran. 40, 1, 73-88. [CrossRef] [Google Scholar]
  • Bernardin J.D., Stebbins C.J., Mudawar I. (1997) Mapping of impact and heat transfer regimes of water drops impinging on a polished surface, Int. J. Heat Mass Tran. 40, 247-267. [Google Scholar]
  • Bernardin J.D., Mudawar I. (1999) The Leidenfrost Point: Experimental Study and Assessment of Existing Models, J. Heat Trans-T. ASME 121, 894-903. [CrossRef] [Google Scholar]
  • Bernardin J.D., Mudawar I. (2004) A Leidenfrost point model for impinging droplets and sprays, J. Heat Trans.-T. ASME 126, 2, 272-278. [CrossRef] [Google Scholar]
  • Moita A.S., Moreira A.L.N. (2007) Drop impacts onto cold and heated rigid surfaces: Morphological comparisons, disintegration limits and secondary atomization, Int. J. Heat Fluid Fl. 28, 4, 735-752. [CrossRef] [Google Scholar]
  • Desoutter G., Cuenot B., Habchi C., Poinsot T. (2005) Interaction of a premixed flame with a liquid fuel film on a wall, Proc. Combust. Inst. 30, 259-266. [CrossRef] [Google Scholar]
  • Fardad D., Ladommatos N. (1999) Evaporation of hydrocarbon compounds, including gasoline and diesel fuel, on heated metal surfaces, Proc. Inst. Mech. Eng. Part D - J. Automobile Eng. 213, D6, 625-645. [CrossRef] [Google Scholar]
  • Stanglmaier R.H., Roberts C.E., Moses C.A. (2002) Vaporization of Individual fuel drops on a heated surface: A study of fuel-wall interactions within Direct-injected Gazoline (DIG) Engines, SAE paper 2002-01-0838. [Google Scholar]
  • Dhir V.K. (1998) Boiling heat transfer, Annu. Rev. Fluid Mech. 30, 365-401. [Google Scholar]
  • Dhir V.K. (1991) Nucleate and transition boiling heat transfer under pool and external flow conditions, Int. J. Heat Fluid Fl. 12, 4, 290-314. [CrossRef] [Google Scholar]
  • Xiong T.Y., Yuen M.C. (1991) Evaporation of a liquid droplet on hot plate, Int. J. Heat Mass Tran. 34, 7, 1881-1894. [Google Scholar]
  • Tamura Z., Tanasawa Y. (1959) Evaporation and Combustion of a drop contacting with a hot surface, Symp. Combust. 509-522. [Google Scholar]
  • Takano T., Fujita T., Kobayasi K. (1995) Vaporization Behavior of a Sigle Droplet Impinging on hot Surface with a Flame-Sprayed Ceramic Coating and a Pressurized Atmosphere, Heat Transfer- Jap. Res. 24, 1, 80-97. [Google Scholar]
  • O’Rourke P., Amsden A. (2000) A Spray/wall Interaction Submodel for the KIVA-3 Wall Film Model, SAE paper 2000-01-0271. [Google Scholar]
  • Desoutter G., Habchi C., Cuenot B., Poinsot T. (2006) Single-component Liquid film evaporation model development and validation using Direct Numerical Simulation, ICLASS Kyoto, 2006. [Google Scholar]
  • Desoutter G., Habchi C., Cuenot B., Poinsot T. (2009) DNS and modeling of the turbulent boundary layer over an evaporating liquid film, Int. J. Heat Mass Tran. doi:10.1016/j.ijheatmasstransfer.2009.06.039. [Google Scholar]
  • Iida Y., Kobayasi K. (1969) Distribution of void fraction above a horizontal heating surface in pool boiling, Bull. JSME 12, 283-290. [Google Scholar]
  • Nishio S., Tanaka H. (2002) Simplified Model Predicting Contact-Line-Length Density at Critical Heat Flux Based on Direct Observation of Boiling Structure, JSME Int. J. B-Fluid T. 50, 1, 72-78. [Google Scholar]
  • Dhir V.K., Liaw S.P. (1989) Framework for a Unified Model for Nucleate and Transition Pool Boiling, J. Heat Trans.-T. ASME 111, 739-746. [CrossRef] [Google Scholar]
  • Nigmatulin B.I., Vasiliev N.I., Guguchkin V.V. (1993) Interaction between liquid droplets and heated surface, Warme Stoffubertragung 28, 313-319. [CrossRef] [Google Scholar]
  • Temple-Pediani R.W. (1969) Fuel drop vaporization under pressure on a hot surface, Proc. Inst. Mech. Eng. 184 Pt. 1, 38, 677-696. [Google Scholar]
  • Spiegler P., Hopenfeld J., Silberberg M., Bumpus J., Norman A. (1963) Onset of stable film boiling and the foam limit, Int. J. Heat Mass Tran. 6, 11, 987-989. [CrossRef] [Google Scholar]
  • Lienhard J.H. (1976) Correlation for the limiting liquid superheat, Chem. Eng. Sci. 31, 9, 847-849. [CrossRef] [Google Scholar]
  • Emmerson G.S., Snoek C.W. (1978) The effect of pressure on the leidenfrost point of discrete drops of water and freon on a brass surface, Int. J. Heat Mass Tran. 21, 8, 1081-1086. [CrossRef] [Google Scholar]
  • Breuer A., Klingsporn M., Schneemann G.A., Wruck N., Renz U. (1993) Experimental and Theoritical Investigation of the Phase Transition of Multicomponent Sprays and the Influence of the wall heat flux, Periodic Report, 01.07.1993 to 31.12.1993, Contract JOU2-CT92-0162. [Google Scholar]
  • Chen R.H., Chiu S.L., Lin T.F. (2207) On the collision behaviors of a diesel drop impinging on a hot surface, Exp. Therm. Fluid Sci. 32, 2, 587-595. [CrossRef] [Google Scholar]
  • Kandlikar S.G., Steinke M.E. (2001) Contact angles of droplets during spread and recoil after impinging on a heated surface, Chem. Eng. Res. Des. 79, A4, 491-498. [CrossRef] [Google Scholar]
  • Nagaoka M., Kawazoe H., Nomura N. (1994) Modeling Fuel Spray Impingement on a Hot Wall for Gasoline Engines, SAE paper 940525. [Google Scholar]
  • Kandlikar S.G., Steinke M.E. (2002) Contact angles and interface behavior during rapid evaporation of liquid on a heated surface, Int. J. Heat Mass Tran. 45, 18, 3771-3780. [CrossRef] [Google Scholar]
  • Yang G.E., Fan L.-S. (2005) Three-dimensional simulation of impingement of a liquid droplet on a flat surface in the Leidenfrost regime, Phys. Fluids 17, 027104, 1-20. [Google Scholar]
  • Chandra S., Aziz S.D. (1994) Leidenfrost Evaporation of Liquid Nitrgen Droplets, J. Heat Trans.-T. ASME 116, 999- 1006. [CrossRef] [Google Scholar]
  • Kistemaker J. (1963) The spheroidal state of waterdrop, Physica 29, 96-104. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.