Dossier: Applied Mechanics for the Oil Industry - Part 1
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 56, Numéro 6, November-December 2001
Dossier: Applied Mechanics for the Oil Industry - Part 1
Page(s) 555 - 580
Publié en ligne 1 décembre 2006
  • Meimon, Y. (2000) Some Challenges of the Development of Constitutive Equations of Semicrystalline Polymers for Structural Calculations. Oil & Gas Science and Technology, 55, 6, 649-659. [CrossRef] [EDP Sciences] [Google Scholar]
  • Gaillard-Devaux, E. (1995) Rupture du polyéthylène en température par décompression de méthane. Thèse, École nationale supérieure des mines de Paris. [Google Scholar]
  • Bauwens-Crowet, C.,Bauwens, J. and Homes, G. (1969) Tensile Yield-Stress Behavior of Glassy Polymers. J. Polym. Sci. - Part A-2, 7, 735-742. [CrossRef] [Google Scholar]
  • Sternstein, S.S.,Ongchin, L. and Silverman, A. (1968) Inhomogeneous Deformation and Yielding of Glasslike High Polymers. Appl. Polym. Symp., 7 175-199 [Google Scholar]
  • Bahadur, S. (1973) Strain Hardening Equation and the Prediction of Tensile Strength of Rolled Polymers. Polym. Eng. Sci., 13, 266-272. [CrossRef] [Google Scholar]
  • Bowden, P.B. and Young, R.J. (1974) Deformation Mechanism in Crystalline polymers, J. Mater. Sci., 9, 2034-2051. [CrossRef] [Google Scholar]
  • Haudin, J.M. (1982) in Plastic Deformation of Amorphous and Semicrystalline Materials, B. Escaig and C. G’Sell, eds., Les éditions de physique, Les Ullis Cedex, France, 291-311. [Google Scholar]
  • Argon, A.S. (1973) A Theory for the Low-Tempature Plastic Deformation of Glassy Polymers. Phil. Mag., 28, 839-865. [CrossRef] [Google Scholar]
  • Escaig, B. (1984) A Metallurgical Approach to the Pre-yield an yield Behavior of Glassy Polymers, Polym. Eng. Sci., 24, 10, 737-749. [CrossRef] [Google Scholar]
  • Perez, J. (1992) Physique et mécanique des polymères amorphes, Lavoisier, Tec et Doc, Paris, France. [Google Scholar]
  • G’Sell, C. (1986) Plastic Deformation of Glassy Polymers: Constitutive Equations and Macromolecular Mechanisms, in Strength of Metals and Alloys, Ed. H.J. McQueen et al., 3, Pergamon Press, Oxford, UK, 1946-1982. [Google Scholar]
  • Boyce, M.C. and Arruda, E.M. (1990) An Experimental and Analytical Investigation of the Large Strain Compressive and Tensile Response of Glassy Polymers. Polym. Eng. Sci., 30, 1288-1298. [CrossRef] [Google Scholar]
  • Amadeo, J. and Lee, D. (1992) Modelling the Uniaxial Rate Temperature Dependent Behaviour of Amorphous and Semicrystalline Polymers. Polymer Engineering and Science, 32, 16, 1055-1065. [CrossRef] [Google Scholar]
  • G’Sell, C. and Jonas, J.J. (1979) Determination of the Plastic Behaviour of Solid Polymers at Constant True Strain Rate. J. Mater. Sci., 14, 583-591. [CrossRef] [Google Scholar]
  • G’Sell, C. and Jonas, J.J. (1981) Yield and Transient Effects During the Plastic Deformation of Solid Polymers. J. Mater. Sci., 16, 1956-1974. [CrossRef] [Google Scholar]
  • Eyring, H., Glasstone, S. and Laidler, K.J. (1941) The Theory of Rate Processes: the Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, Mc Graw-Hill Book Cy., New York. [Google Scholar]
  • Treloar, L.R.G. (1995) The Physics of Rubber Elasticity, 3rd ed., Clarendon, Oxford. [Google Scholar]
  • Boyce, M.C.,Parks, D.M. and Argon, A.S. (1988) Large Inelastic Deformation of Glassy Polymers - Part I: Rate Dependent Constitutive Model. Mech. Mater., 7, 15-33. [CrossRef] [Google Scholar]
  • Wu, P.D. and Van der Giessen, E. (1993) On Improved Non- Gaussian Network Models for Rubber Elasticity and their Implications to Orientation Hardening in Glassy Polymers. J. Mech. Phys. Solids, 41, 427-456. [CrossRef] [Google Scholar]
  • O’Dowd, N.P. and Knauss, W.G. (1995) Time Dependent Large Principal Deformation of Polymers. J. Mech. Phys. Solids, 43, 771-792. [CrossRef] [Google Scholar]
  • Krempl, E. (1979) Viscoplasticity Based on Total Strain. The Modelling of Creep with Special Considerations of Initial Strain and Aging. Trans. ASME, J. Eng. Mater. Tech., 101, 380-386. [CrossRef] [Google Scholar]
  • Kitagawa, M.,Mori, T. et Matsutani, T. (1989) Rate- Dependant Nonlinear Constitutive Equation of Polypropylene. J. Polym. Sci. - Part B: Polymer Physics, 27, 85-95. [CrossRef] [Google Scholar]
  • Brusselle-Dupend, N. (2000) Comportement viscoélastoplastique d’un polymère semi-cristallin avant la striction : caractérisation expérimentale et modélisation phénoménologique. Thèse, université technologique de Compiègne. [Google Scholar]
  • Perzyna, P. (1963) The Constitutive Equations for Rate Sensitive Plastic Materials. Quartely of Applied Mathematics, 20, 321-332. [CrossRef] [MathSciNet] [Google Scholar]
  • Lemaitre, J. et Chaboche, J.L. (1985) Mécanique des matériaux solides, Dunod, Paris. [Google Scholar]
  • Cunat, C. (2001) The DNLR Approach and Relaxation Phenomena. Part I - Historical Account and DNLR Formalism. Mechanics of Time-Dependent Materials, 5, 39-65. [CrossRef] [Google Scholar]
  • Cunat, C. (1991) A Thermodynamic Theory of Relaxation Based on a Distribution of Nonlinear Processes. J. of Non Crystalline Solids, 131/133, 196-199. [Google Scholar]
  • Dahoun, A. (1992) Comportement plastique et textures de déformation des polymères semi-cristallins en traction uniaxiale et en cisaillement simple. Thèse, INPL. [Google Scholar]
  • Dahoun, A., Aboulfaraj, M., G'Sell, C.,Molinari, A. and Canova, G.R. (1995) Plastic Behavior and Deformation Textures of Poly(Etherether Ketone) Under Uniaxial Tension and Simple Shear. Polym. Eng. Sci., 35, 4, 317-330. [CrossRef] [Google Scholar]
  • G'Sell, C.,Dahoun, A. (1994) Evolution of Microstrusture in Semicrystalline Polymers under Large Plastic Deformation. Materials Science and Engineering, A175, 183-199. [CrossRef] [Google Scholar]
  • Lee, B.,Parks, D. and Ahzi, S. (1993) Micromechanical Modeling of Large Plastic Deformation and Texture Evolution in Semicrystalline Polymers. J. Mech. Phys. Solids, 41, 1651-1687. [CrossRef] [Google Scholar]
  • Chen, M.X.,Zheng, Q.S. and Yang, W. (1996) A Micromechanical Model of Texture Induced Orthotropy in Plane Crystalline Polymers. J. Mech. Phys. Solids, 44, 157-178. [CrossRef] [MathSciNet] [Google Scholar]
  • Argon, A.S. (1997) Morphological Mechanisms and Kinetics of Large-Strain Plastic Deformation and Evolution of Texture in Semicrystalline Polymers. Journal of Computer- Aided Materials Design, 4, 75-98. [CrossRef] [Google Scholar]
  • Berveiller, M. and Zaoui, A. (1995) Modélisation du comportement mécanique des solides microhétérogènes, in Introduction à la mécanique des polymères, C. G'Sell et J.M. Haudin, Institut national polytechnique de Lorraine, 225-249. [Google Scholar]
  • Paquin, A. (1998) Modélisation micromécanique du comportement élastoviscoplastique des matériaux hétérogènes. Thèse, université de Metz. [Google Scholar]
  • Rougier, Y. (1994) Étude du comportement sous irradiation : modélisation micromécanique de l’élastoviscoplasticité. Thèse, École polytechnique. [Google Scholar]
  • Meimon, Y. and Cangémi, L. (1999) Polymères semicristallins à usage structural : microstructures, comportement mécanique. Proc. of Colloque national mecamat, 79-84. [Google Scholar]
  • Coussy, O., (1989) Thermodynamics of Saturated Porous Solids in Finite Deformation, Eur. J.; Mech. A/Solids, 8, 1-14. [Google Scholar]
  • Coussy, O. (1991) Mécanique des milieux poreux, Technip, Paris. [Google Scholar]
  • Coussy, O. (1995) Mechanics of Porous Continua, Wiley, New York. [Google Scholar]
  • Prigogine, I. (1967) Thermodynamics of Irreversible Processes. 3rd ed., Interscience, New York. [Google Scholar]
  • Biot, M.A. (1972) Theory of Finite Deformations of Porous Solids. Indiana University Mathematics Journal, 21, 7, 597-620. [CrossRef] [MathSciNet] [Google Scholar]
  • G'Sell, C. (1995) Lois de comportement mécanique des polymères solides, in Introduction à la mécanique des polymères, C. G’Sell et J.M. Haudin, Institut national polytechnique de Lorraine, 141-168. [Google Scholar]
  • Chaboche, J.L. (1995) Formalisme général des lois de comportement : applications aux métaux et polymères, in Introduction à la mécanique des polymères, C. G'Sell et J.M. Haudin, Institut national polytechnique de Lorraine, 119-140. [Google Scholar]
  • G'Sell, C. (1995) Lois de comportement mécanique des polymères solides, in Introduction à la mécanique des polymères, C. G'Sell et J.M. Haudin, Institut national polytechnique de Lorraine, 141-168. [Google Scholar]
  • Pae, K.D. and Mears, D.R. (1968) The Effects of High Pressure on Mechanical Behavior and Properties of Polytetrafluoroethylene and Polyethylene. Polymer Letters, 6, 269-273. [CrossRef] [Google Scholar]
  • Sardar, D.,Radcliffe, S.V. and Baer, E. (1968) Effects of High Hydrostatic Pressure on the Mechanical Behavior of a Crystalline Polymer-Polyoxymethylene. Polymer Eng. Sci., 8, 290-301 [CrossRef] [MathSciNet] [Google Scholar]
  • Quinson, R.,Perez, J.,Rink, M. and Pavan, A. (1997) Yield Criteria for Amorphous Glassy Polymers. J. Materials Science, 32, 1371-1379. [CrossRef] [Google Scholar]
  • Castagnet, S. (1998) Comportement mécanique du PVDF : compétition entre cavitation et écoulement visqueux. Thèse, université de Poitiers. [Google Scholar]
  • Whitney, W. and Andrews, R.D. (1967) Yielding of Glassy Polymers: Volume Effects. J. Polym. Sci. - Part C: Polymer Letters, 16, 2981-2990. [CrossRef] [Google Scholar]
  • Kitagawa, M. and Yoneyama, T. (1988) Plastic Dilatation Due to Compression in Polymer Solids. J. Polym. Sci. - Part C: Polymer Letters, 26, 206-212. [Google Scholar]
  • Gaucher-Miri, V.,Depecker, C. et Séguéla, R. (1997) Reversible Strain-Induced Order in the Amorphous Phase of Low-Density Ethylene/Butene Copolymer. J. of Polym. Sci. - Part B: Polymer Physics, 35, 2151-2159. [CrossRef] [Google Scholar]
  • Gaucher-Miri, V. (1995) Étude de la plasticité des polyéthylènes en traction uniaxiale. Thèse, université des sciences et technologies de Lille. [Google Scholar]
  • Marchal, K. (1996) Influence du chemin de chargement sur le comportement du polyamide 11 autour de la transition vitreuse. Thèse, université de Poitiers. [Google Scholar]
  • Castagnet, L.,Gacougnolle, J.L. and Dang, P. (2000) Correlation between Macroscopical Viscoelastic Behaviour and Micromechanisms in Strained α Polyvinylidene Fluoride (PVF2). Materials Science and Engineering, A276, 152-159. [CrossRef] [Google Scholar]
  • Quatravaux, T., Elkoun, S.,G'Sell, C., Cangémi, L. and Meimon, Y. On the Experimental Characterization of Volume Strain of Poly(Vinylidene Fluoride) in the Region of Homogeneous Plastic Deformation. Submitted to Journal of Polymer Science. [Google Scholar]
  • Elkoun, S., G'Sell, C., Cangémi, L. and Meimon, Y. Characterization of Volume Strain of Poly(Vinylidene Fluoride) under Creep Test. Submitted to Journal of Polymer Science. [Google Scholar]
  • Haudin, J.M. (1995) Structures et morphologies des polymères semi-cristallins, in Introduction à la mécanique des polymères, C. G'Sell et J.M. Haudin, Institut national polytechnique de Lorraine, 97-115. [Google Scholar]
  • Oudet, C. (1994) Polym籥s. Structure et propriétés. Introduction, Masson, Paris. [Google Scholar]
  • Magill, J.H. (2001) Review Spherulites: A Personal Perspective. J. Mater. Sci., 36, 3143-3164. [CrossRef] [Google Scholar]
  • Struik, L.C.E. (1978) Physical Aging in Amorphous Polymers and Other Materials, Elsevier, Amsterdam. [Google Scholar]
  • Struik, L.C.E. (1987) The Mechanical and Physical Ageing of Semicrystalline Polymers: 1. Polymer, 28, 1521-1533. [CrossRef] [Google Scholar]
  • Smit, P.P.A. (1966) The Glass Transition in Carbon Black Reinforced Rubber. Rheol. Acta, 5, 277-283. [CrossRef] [Google Scholar]
  • Kraus, G. (1971) Reinforcement of Elastomers by Carbon Black. Adv. Polym. Sci., 8, 155-237. [CrossRef] [Google Scholar]
  • Wu, P., Siesler, H.W., DalMaso, F. and Zanier, N. (1998) Rheo-optical Fourier-Transform NIR Spectroscopy of Polyamide 11. Analusis Magazine, 26, 4, 61-64. [CrossRef] [EDP Sciences] [Google Scholar]
  • Klopffer, M.H. and Flaconn碨e, B. (2001) Transport Properties of Gases in Polymers: Bibliographic Review. Oil & Gas Science and Technology – Rev. IFP, 56, 3, 223-244. [Google Scholar]
  • DalMaso, F.,Barré, L.,Espinat, D.,Jarrin, J. and Boscher, Y. (1994) Simulation de la croissance de sphérolites de polymère et de spectres de diffusion centrale des rayons X. Revue de l’Institut français du pétrole, 49, 4, 380-384. [Google Scholar]
  • Takayanagi, T. (1970) Viscoelastic Behavior of Crystalline Polymers. Fourth International Congress of Rheology, 161-187. [Google Scholar]
  • Weitsman, Y. (1987) Stress Assisted Diffusion in Elastic and Viscoelastic Materials. J. Mech. Phys. Solids, 35, 1, 73-93. [CrossRef] [Google Scholar]
  • Curro, J.G. (1974) Polymeric Equations of State. J. Macromol. Sci. - Rev. Macromol. Chem., C11, 2, 321-366. [CrossRef] [Google Scholar]
  • Sanchez, I.C. and Lacombe, R.H.(1978) Statistical Thermodynamics of Polymer Solutions. Macromolecules, 11, 6, 1145-1156. [Google Scholar]
  • Simha, R. (1997) Configurational Thermodynamics of the Liquid and Glassy Polymeric states. Macromolecules, 10, 5, 1025-1030. [CrossRef] [Google Scholar]
  • Dee, G.T. and Walsh, D.J. (1988) Equations of State for Polymer Liquids. Macromolecules, 21, 811-815. [CrossRef] [MathSciNet] [Google Scholar]
  • Tait, P.G. (1888) Phys. Chem., 2, 1. [Google Scholar]
  • Nanda, V.S. and Simha, R. (1964) Equation of State of Polymer Liquids and Glasses at Elevated Pressures. J. Chem. Phys., 41, 12, 3870-3878. [CrossRef] [Google Scholar]
  • Schofield, A.N. and Wroth, C.P. (1968) Critical State Soil Mechanics, Mc Graw Hill. [Google Scholar]
  • Roscoe, K.H.,Schofield, A.N. and Wroth, C.P. (1968) On the Yielding of Soils. Géotechnique, 9, 71. [Google Scholar]
  • Trumel, H.,Dragon, A.,Fanget, A. and Lambert, P. (2001) A Constitutive Model for the Dynamic and High-Pressure behaviour of a Propellant-Like Material: Part II: Model Development and Application. Int. J. Numer. Anal. Meth. Geomech., 25, 581-603. [CrossRef] [Google Scholar]
  • Bélec, L. (1995) Mise en évidence de la contribution des phases amorphe et cristalline dans la déformation du polyamide 11 et du polyamide 12 autour de la transition vitreuse. Thèse, université de Poitiers. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.