- Meimon, Y. (2000) Some Challenges of the Development of Constitutive Equations of Semicrystalline Polymers for Structural Calculations. Oil & Gas Science and Technology, 55, 6, 649-659. [CrossRef] [EDP Sciences] [Google Scholar]
- Gaillard-Devaux, E. (1995) Rupture du polyéthylène en température par décompression de méthane. Thèse, École nationale supérieure des mines de Paris. [Google Scholar]
- Bauwens-Crowet, C.,Bauwens, J. and Homes, G. (1969) Tensile Yield-Stress Behavior of Glassy Polymers. J. Polym. Sci. - Part A-2, 7, 735-742. [CrossRef] [Google Scholar]
- Sternstein, S.S.,Ongchin, L. and Silverman, A. (1968) Inhomogeneous Deformation and Yielding of Glasslike High Polymers. Appl. Polym. Symp., 7 175-199 [Google Scholar]
- Bahadur, S. (1973) Strain Hardening Equation and the Prediction of Tensile Strength of Rolled Polymers. Polym. Eng. Sci., 13, 266-272. [CrossRef] [Google Scholar]
- Bowden, P.B. and Young, R.J. (1974) Deformation Mechanism in Crystalline polymers, J. Mater. Sci., 9, 2034-2051. [CrossRef] [Google Scholar]
- Haudin, J.M. (1982) in Plastic Deformation of Amorphous and Semicrystalline Materials, B. Escaig and C. G’Sell, eds., Les éditions de physique, Les Ullis Cedex, France, 291-311. [Google Scholar]
- Argon, A.S. (1973) A Theory for the Low-Tempature Plastic Deformation of Glassy Polymers. Phil. Mag., 28, 839-865. [CrossRef] [Google Scholar]
- Escaig, B. (1984) A Metallurgical Approach to the Pre-yield an yield Behavior of Glassy Polymers, Polym. Eng. Sci., 24, 10, 737-749. [CrossRef] [Google Scholar]
- Perez, J. (1992) Physique et mécanique des polymères amorphes, Lavoisier, Tec et Doc, Paris, France. [Google Scholar]
- G’Sell, C. (1986) Plastic Deformation of Glassy Polymers: Constitutive Equations and Macromolecular Mechanisms, in Strength of Metals and Alloys, Ed. H.J. McQueen et al., 3, Pergamon Press, Oxford, UK, 1946-1982. [Google Scholar]
- Boyce, M.C. and Arruda, E.M. (1990) An Experimental and Analytical Investigation of the Large Strain Compressive and Tensile Response of Glassy Polymers. Polym. Eng. Sci., 30, 1288-1298. [CrossRef] [Google Scholar]
- Amadeo, J. and Lee, D. (1992) Modelling the Uniaxial Rate Temperature Dependent Behaviour of Amorphous and Semicrystalline Polymers. Polymer Engineering and Science, 32, 16, 1055-1065. [CrossRef] [Google Scholar]
- G’Sell, C. and Jonas, J.J. (1979) Determination of the Plastic Behaviour of Solid Polymers at Constant True Strain Rate. J. Mater. Sci., 14, 583-591. [CrossRef] [Google Scholar]
- G’Sell, C. and Jonas, J.J. (1981) Yield and Transient Effects During the Plastic Deformation of Solid Polymers. J. Mater. Sci., 16, 1956-1974. [CrossRef] [Google Scholar]
- Eyring, H., Glasstone, S. and Laidler, K.J. (1941) The Theory of Rate Processes: the Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, Mc Graw-Hill Book Cy., New York. [Google Scholar]
- Treloar, L.R.G. (1995) The Physics of Rubber Elasticity, 3rd ed., Clarendon, Oxford. [Google Scholar]
- Boyce, M.C.,Parks, D.M. and Argon, A.S. (1988) Large Inelastic Deformation of Glassy Polymers - Part I: Rate Dependent Constitutive Model. Mech. Mater., 7, 15-33. [CrossRef] [Google Scholar]
- Wu, P.D. and Van der Giessen, E. (1993) On Improved Non- Gaussian Network Models for Rubber Elasticity and their Implications to Orientation Hardening in Glassy Polymers. J. Mech. Phys. Solids, 41, 427-456. [CrossRef] [Google Scholar]
- O’Dowd, N.P. and Knauss, W.G. (1995) Time Dependent Large Principal Deformation of Polymers. J. Mech. Phys. Solids, 43, 771-792. [CrossRef] [Google Scholar]
- Krempl, E. (1979) Viscoplasticity Based on Total Strain. The Modelling of Creep with Special Considerations of Initial Strain and Aging. Trans. ASME, J. Eng. Mater. Tech., 101, 380-386. [CrossRef] [Google Scholar]
- Kitagawa, M.,Mori, T. et Matsutani, T. (1989) Rate- Dependant Nonlinear Constitutive Equation of Polypropylene. J. Polym. Sci. - Part B: Polymer Physics, 27, 85-95. [CrossRef] [Google Scholar]
- Brusselle-Dupend, N. (2000) Comportement viscoélastoplastique d’un polymère semi-cristallin avant la striction : caractérisation expérimentale et modélisation phénoménologique. Thèse, université technologique de Compiègne. [Google Scholar]
- Perzyna, P. (1963) The Constitutive Equations for Rate Sensitive Plastic Materials. Quartely of Applied Mathematics, 20, 321-332. [CrossRef] [MathSciNet] [Google Scholar]
- Lemaitre, J. et Chaboche, J.L. (1985) Mécanique des matériaux solides, Dunod, Paris. [Google Scholar]
- Cunat, C. (2001) The DNLR Approach and Relaxation Phenomena. Part I - Historical Account and DNLR Formalism. Mechanics of Time-Dependent Materials, 5, 39-65. [CrossRef] [Google Scholar]
- Cunat, C. (1991) A Thermodynamic Theory of Relaxation Based on a Distribution of Nonlinear Processes. J. of Non Crystalline Solids, 131/133, 196-199. [Google Scholar]
- Dahoun, A. (1992) Comportement plastique et textures de déformation des polymères semi-cristallins en traction uniaxiale et en cisaillement simple. Thèse, INPL. [Google Scholar]
- Dahoun, A., Aboulfaraj, M., G'Sell, C.,Molinari, A. and Canova, G.R. (1995) Plastic Behavior and Deformation Textures of Poly(Etherether Ketone) Under Uniaxial Tension and Simple Shear. Polym. Eng. Sci., 35, 4, 317-330. [CrossRef] [Google Scholar]
- G'Sell, C.,Dahoun, A. (1994) Evolution of Microstrusture in Semicrystalline Polymers under Large Plastic Deformation. Materials Science and Engineering, A175, 183-199. [Google Scholar]
- Lee, B.,Parks, D. and Ahzi, S. (1993) Micromechanical Modeling of Large Plastic Deformation and Texture Evolution in Semicrystalline Polymers. J. Mech. Phys. Solids, 41, 1651-1687. [CrossRef] [Google Scholar]
- Chen, M.X.,Zheng, Q.S. and Yang, W. (1996) A Micromechanical Model of Texture Induced Orthotropy in Plane Crystalline Polymers. J. Mech. Phys. Solids, 44, 157-178. [CrossRef] [MathSciNet] [Google Scholar]
- Argon, A.S. (1997) Morphological Mechanisms and Kinetics of Large-Strain Plastic Deformation and Evolution of Texture in Semicrystalline Polymers. Journal of Computer- Aided Materials Design, 4, 75-98. [CrossRef] [Google Scholar]
- Berveiller, M. and Zaoui, A. (1995) Modélisation du comportement mécanique des solides microhétérogènes, in Introduction à la mécanique des polymères, C. G'Sell et J.M. Haudin, Institut national polytechnique de Lorraine, 225-249. [Google Scholar]
- Paquin, A. (1998) Modélisation micromécanique du comportement élastoviscoplastique des matériaux hétérogènes. Thèse, université de Metz. [Google Scholar]
- Rougier, Y. (1994) Étude du comportement sous irradiation : modélisation micromécanique de l’élastoviscoplasticité. Thèse, École polytechnique. [Google Scholar]
- Meimon, Y. and Cangémi, L. (1999) Polymères semicristallins à usage structural : microstructures, comportement mécanique. Proc. of Colloque national mecamat, 79-84. [Google Scholar]
- Coussy, O., (1989) Thermodynamics of Saturated Porous Solids in Finite Deformation, Eur. J.; Mech. A/Solids, 8, 1-14. [Google Scholar]
- Coussy, O. (1991) Mécanique des milieux poreux, Technip, Paris. [Google Scholar]
- Coussy, O. (1995) Mechanics of Porous Continua, Wiley, New York. [Google Scholar]
- Prigogine, I. (1967) Thermodynamics of Irreversible Processes. 3rd ed., Interscience, New York. [Google Scholar]
- Biot, M.A. (1972) Theory of Finite Deformations of Porous Solids. Indiana University Mathematics Journal, 21, 7, 597-620. [CrossRef] [MathSciNet] [Google Scholar]
- G'Sell, C. (1995) Lois de comportement mécanique des polymères solides, in Introduction à la mécanique des polymères, C. G’Sell et J.M. Haudin, Institut national polytechnique de Lorraine, 141-168. [Google Scholar]
- Chaboche, J.L. (1995) Formalisme général des lois de comportement : applications aux métaux et polymères, in Introduction à la mécanique des polymères, C. G'Sell et J.M. Haudin, Institut national polytechnique de Lorraine, 119-140. [Google Scholar]
- G'Sell, C. (1995) Lois de comportement mécanique des polymères solides, in Introduction à la mécanique des polymères, C. G'Sell et J.M. Haudin, Institut national polytechnique de Lorraine, 141-168. [Google Scholar]
- Pae, K.D. and Mears, D.R. (1968) The Effects of High Pressure on Mechanical Behavior and Properties of Polytetrafluoroethylene and Polyethylene. Polymer Letters, 6, 269-273. [CrossRef] [Google Scholar]
- Sardar, D.,Radcliffe, S.V. and Baer, E. (1968) Effects of High Hydrostatic Pressure on the Mechanical Behavior of a Crystalline Polymer-Polyoxymethylene. Polymer Eng. Sci., 8, 290-301 [CrossRef] [MathSciNet] [Google Scholar]
- Quinson, R.,Perez, J.,Rink, M. and Pavan, A. (1997) Yield Criteria for Amorphous Glassy Polymers. J. Materials Science, 32, 1371-1379. [CrossRef] [Google Scholar]
- Castagnet, S. (1998) Comportement mécanique du PVDF : compétition entre cavitation et écoulement visqueux. Thèse, université de Poitiers. [Google Scholar]
- Whitney, W. and Andrews, R.D. (1967) Yielding of Glassy Polymers: Volume Effects. J. Polym. Sci. - Part C: Polymer Letters, 16, 2981-2990. [CrossRef] [Google Scholar]
- Kitagawa, M. and Yoneyama, T. (1988) Plastic Dilatation Due to Compression in Polymer Solids. J. Polym. Sci. - Part C: Polymer Letters, 26, 206-212. [Google Scholar]
- Gaucher-Miri, V.,Depecker, C. et Séguéla, R. (1997) Reversible Strain-Induced Order in the Amorphous Phase of Low-Density Ethylene/Butene Copolymer. J. of Polym. Sci. - Part B: Polymer Physics, 35, 2151-2159. [CrossRef] [Google Scholar]
- Gaucher-Miri, V. (1995) Étude de la plasticité des polyéthylènes en traction uniaxiale. Thèse, université des sciences et technologies de Lille. [Google Scholar]
- Marchal, K. (1996) Influence du chemin de chargement sur le comportement du polyamide 11 autour de la transition vitreuse. Thèse, université de Poitiers. [Google Scholar]
- Castagnet, L.,Gacougnolle, J.L. and Dang, P. (2000) Correlation between Macroscopical Viscoelastic Behaviour and Micromechanisms in Strained α Polyvinylidene Fluoride (PVF2). Materials Science and Engineering, A276, 152-159. [CrossRef] [Google Scholar]
- Quatravaux, T., Elkoun, S.,G'Sell, C., Cangémi, L. and Meimon, Y. On the Experimental Characterization of Volume Strain of Poly(Vinylidene Fluoride) in the Region of Homogeneous Plastic Deformation. Submitted to Journal of Polymer Science. [Google Scholar]
- Elkoun, S., G'Sell, C., Cangémi, L. and Meimon, Y. Characterization of Volume Strain of Poly(Vinylidene Fluoride) under Creep Test. Submitted to Journal of Polymer Science. [Google Scholar]
- Haudin, J.M. (1995) Structures et morphologies des polymères semi-cristallins, in Introduction à la mécanique des polymères, C. G'Sell et J.M. Haudin, Institut national polytechnique de Lorraine, 97-115. [Google Scholar]
- Oudet, C. (1994) Polym籥s. Structure et propriétés. Introduction, Masson, Paris. [Google Scholar]
- Magill, J.H. (2001) Review Spherulites: A Personal Perspective. J. Mater. Sci., 36, 3143-3164. [CrossRef] [Google Scholar]
- Struik, L.C.E. (1978) Physical Aging in Amorphous Polymers and Other Materials, Elsevier, Amsterdam. [Google Scholar]
- Struik, L.C.E. (1987) The Mechanical and Physical Ageing of Semicrystalline Polymers: 1. Polymer, 28, 1521-1533. [CrossRef] [Google Scholar]
- Smit, P.P.A. (1966) The Glass Transition in Carbon Black Reinforced Rubber. Rheol. Acta, 5, 277-283. [CrossRef] [Google Scholar]
- Kraus, G. (1971) Reinforcement of Elastomers by Carbon Black. Adv. Polym. Sci., 8, 155-237. [CrossRef] [Google Scholar]
- Wu, P., Siesler, H.W., DalMaso, F. and Zanier, N. (1998) Rheo-optical Fourier-Transform NIR Spectroscopy of Polyamide 11. Analusis Magazine, 26, 4, 61-64. [CrossRef] [EDP Sciences] [Google Scholar]
- Klopffer, M.H. and Flaconn碨e, B. (2001) Transport Properties of Gases in Polymers: Bibliographic Review. Oil & Gas Science and Technology – Rev. IFP, 56, 3, 223-244. [Google Scholar]
- DalMaso, F.,Barré, L.,Espinat, D.,Jarrin, J. and Boscher, Y. (1994) Simulation de la croissance de sphérolites de polymère et de spectres de diffusion centrale des rayons X. Revue de l’Institut français du pétrole, 49, 4, 380-384. [Google Scholar]
- Takayanagi, T. (1970) Viscoelastic Behavior of Crystalline Polymers. Fourth International Congress of Rheology, 161-187. [Google Scholar]
- Weitsman, Y. (1987) Stress Assisted Diffusion in Elastic and Viscoelastic Materials. J. Mech. Phys. Solids, 35, 1, 73-93. [CrossRef] [Google Scholar]
- Curro, J.G. (1974) Polymeric Equations of State. J. Macromol. Sci. - Rev. Macromol. Chem., C11, 2, 321-366. [CrossRef] [Google Scholar]
- Sanchez, I.C. and Lacombe, R.H.(1978) Statistical Thermodynamics of Polymer Solutions. Macromolecules, 11, 6, 1145-1156. [Google Scholar]
- Simha, R. (1997) Configurational Thermodynamics of the Liquid and Glassy Polymeric states. Macromolecules, 10, 5, 1025-1030. [CrossRef] [Google Scholar]
- Dee, G.T. and Walsh, D.J. (1988) Equations of State for Polymer Liquids. Macromolecules, 21, 811-815. [CrossRef] [MathSciNet] [Google Scholar]
- Tait, P.G. (1888) Phys. Chem., 2, 1. [Google Scholar]
- Nanda, V.S. and Simha, R. (1964) Equation of State of Polymer Liquids and Glasses at Elevated Pressures. J. Chem. Phys., 41, 12, 3870-3878. [CrossRef] [Google Scholar]
- Schofield, A.N. and Wroth, C.P. (1968) Critical State Soil Mechanics, Mc Graw Hill. [Google Scholar]
- Roscoe, K.H.,Schofield, A.N. and Wroth, C.P. (1968) On the Yielding of Soils. Géotechnique, 9, 71. [Google Scholar]
- Trumel, H.,Dragon, A.,Fanget, A. and Lambert, P. (2001) A Constitutive Model for the Dynamic and High-Pressure behaviour of a Propellant-Like Material: Part II: Model Development and Application. Int. J. Numer. Anal. Meth. Geomech., 25, 581-603. [CrossRef] [Google Scholar]
- Bélec, L. (1995) Mise en évidence de la contribution des phases amorphe et cristalline dans la déformation du polyamide 11 et du polyamide 12 autour de la transition vitreuse. Thèse, université de Poitiers. [Google Scholar]
Issue |
Oil & Gas Science and Technology - Rev. IFP
Volume 56, Number 6, November-December 2001
Dossier: Applied Mechanics for the Oil Industry - Part 1
|
|
---|---|---|
Page(s) | 555 - 580 | |
DOI | https://doi.org/10.2516/ogst:2001045 | |
Published online | 01 December 2006 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.