Regular Article
Determination and evaluation of minimum miscibility pressure using various methods: experimental, visual observation, and simulation
1
Department of Petroleum Engineering, Universitas Islam Riau, Indonesia
2
Department of Energy and Mineral Resources Engineering, Sejong University, Republic of Korea
3
Department of Petroleum Engineering, Institut Teknologi Bandung, Indonesia
* Corresponding author: muslim@eng.uir.ac.id
Received:
8
October
2018
Accepted:
18
April
2019
This research proposes a simultaneous technique using various methods to yield the most reliable Minimum Miscibility Pressure (MMP) value. Several methods have been utilized in this study including slim tube test, swelling test, vanishing interfacial tension test, visual observation during swelling test and vanishing interfacial tension test, and simulation. The proposed method may reduce the uncertainty and avoid doubtful MMP. The method can also demonstrate discrepancies among the results. There were two samples used in this study namely Crude Oil AB-5 and Crude Oil AB-4. It showed that for Crude Oil AB-5 the discrepancies among the results from that of the slim tube test were between 3.9% and 10.4% and 0% and 5.9% for the temperature of 60 °C and 66 °C, respectively. The highest discrepancy was shown by the results from the visual observation during vanishing interfacial tension test and the lowest discrepancy was shown by the results from the swelling test. The vanishing interfacial tension test was found to be the fastest method for predicting the MMP. The method also consumed a smaller amount of oil and gas samples for the experiment. The simultaneous method proposed in this study is considered as more proper and exhibits a valuable method for predicting the MMP. This technique has never been found to be performed by previous researchers and accordingly it becomes the strong point of this study to contribute to the global research in the area of MMP determination.
© M. Abdurrahman et al., published by IFP Energies nouvelles, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.