Dossier: Upscaling of Fluid Flow in Oil Reservoirs
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 59, Number 2, March-April 2004
Dossier: Upscaling of Fluid Flow in Oil Reservoirs
Page(s) 141 - 155
DOI https://doi.org/10.2516/ogst:2004011
Published online 01 December 2006
  • Adler, P. and Thovert, J.F. (1998) Real Porous Media: Local Geometry and Macroscopic Properties. Applied Mechanics Reviews, 51, 9. [CrossRef] [Google Scholar]
  • Alabert, F. (1989) Constraining Description of Randomly Heterogeneous Reservoirs to Pressure Test Data: a Monte-Carlo Study. Paper SPE 19600 in Proc. of the SPE Annual Technical Conference and Exhibition, San Antonio. [Google Scholar]
  • Benito, M. (2003) Non-stationnarité dans les modèles de type booléen: application à la simulation d’unités sédimentaires. Thèse de doctorat, École des mines de Paris. [Google Scholar]
  • Beucher, H., Galli, G., LeLoc’h, G. and Ravenne, C. (1993) Including a Regional Trend in Reservoir Modelling Using the Truncated Gaussian Method. In: Soares, A., ed., Geostatistics Troia'92, 1, 555-566, Kluwer Academic Pub. [CrossRef] [Google Scholar]
  • Blanc, G., Touati, M., Estebenet, T. and Hu, L.Y. (1998) Geostatistical Modelling on Flexible Grids. In: Proc. of the 6th European Conference on the Mathematics of Oil Recovery (ECMOR VI), Peebles, Scotland. [Google Scholar]
  • Caers, J. (2003) Efficient Gradual Deformation Using a Streamline-Based Proxy Method. Journal of Petroleum Science & Engineering, 39, 1-2. [Google Scholar]
  • Chilès, J.P. and Delfiner, P. (1999) Geostatistics: Modeling Spatial Uncertainty, Wiley, New York. [Google Scholar]
  • Deutsch, C.V. and Journel, A.G. (1992) GSLIB Geostatistical Software Library and User's Guide, Oxford University Press, New York. [Google Scholar]
  • Feraille, M., Roggero, F., Manceau, E., Hu, L.Y., Zabalza- Mezghani, I. and Reis, L.C. (2003) Application of Advanced History Matching Techniques to an Integrated Field Case Study. Paper SPE 84463 in Proc. of the SPE Annual Technical Conference and Exhibition, Denver. [Google Scholar]
  • Fournier, F. and Derain, J.F. (1995) A Statistical Methodology for Deriving Reservoir Properties from Seismic Data. Geophysics, 60, 5. [Google Scholar]
  • Freulon, X. and de Fouquet, C. (1993) Conditioning a Gaussian Model with Inequalities. In: Soares, A., ed., Geostatistics Troia'92, 1, 201-212, Kluwer Acad. Pub. [CrossRef] [Google Scholar]
  • Froidevaux, R. (1993) Probability Field Simulation. In: Soares, A., ed., Geostatistics Troia'92, 1, 73-83, Kluwer Academic Pub. [CrossRef] [Google Scholar]
  • Galli, A., Beucher, H., Le Loc’h, G., and Doligez, B. (1994) The Pros and Cons of the Truncated Gaussian Method. In: M. Armstrong and P.A. Down, eds., Geostatistical Simulations, Kluwer Academic Pub. [Google Scholar]
  • Geman, S. and Geman, D. (1984) Stochastic Relaxation, Gibbs Distribution and Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741. [CrossRef] [Google Scholar]
  • Guardiano, F. and Srivastava, M. (1993) Multivariate Geostatistics: Beyond Bivariate Moments. In: Soares, A., ed., Geostatistics Troia'92, 1, 133-144, Kluwer Academic Pub. [CrossRef] [Google Scholar]
  • Haas, A. and Noetinger, B. (1997) Stochastic Reservoir Modelling Constrained by Well Test Permeabilities. In: E.Y. Baafi and N.A. Schofield, eds., Geostatistics Wollongong’96, Kluwer Academic Pub. [Google Scholar]
  • Hegstad, B.K., Omre, H., Tjelmeland, H. and Tyler, K. (1994) Stochastic Simulation and Conditioning by Annealing in Reservoir Description. In: Armstrong, M. and Dowd, P., eds., Geostatistical Simulations, 73-83, Kluwer Academic Pub. [Google Scholar]
  • Hu, L.Y., Joseph, P. and Dubrule, O. (1994) Random Genetic Simulation of the Internal Geometry of Deltaic Sand Bodies. SPE Formation Evaluation, December, 245-250. [Google Scholar]
  • Hu, L.Y., Blanc, G. and Nœtinger, B. (1998) Estimation of Lithofacies Proportions by Use of Well and Well-Test Data. SPE Reservoir Evaluation & Engineering, Feb. [Google Scholar]
  • Hu, L.Y. (2000) Gradual Deformation and Iterative Calibration of Gaussian-Related Stochastic Models. Math. Geology, 32, 1. [Google Scholar]
  • Hu, L.Y.,Blanc, G. and Noetinger, B. (2001) Gradual Deformation and Iterative Calibration of Sequential Stochastic Simulations. Math. Geology, 33, 4. [CrossRef] [Google Scholar]
  • Hu, L.Y. (2003) History Matching of Object-Based Stochastic Reservoir Models. Paper SPE 81503 in Proc. of the SPE 13th Middle East Oil Show & Conference, Bahrain. [Google Scholar]
  • Hu, L.Y. and Le Ravalec-Dupin (2003) Efficient Stochastic Optimization by Reconciling Random and Gradient Searches. In: Proc. of the Annual Conference of the International Association for Mathematical Geology (IAMG), Portsmouth, UK. [Google Scholar]
  • Jacod, J. and Joathon, O. (1971) Use of Random Genetic Models in the Study of Sedimentary Processes. Math. Geology, 3, 265-279. [CrossRef] [MathSciNet] [Google Scholar]
  • Journel, A.G. and Huijbregts, C.J. (1978) Mining Geostatistics. Academic Press, London. [Google Scholar]
  • Lantuéjoul, C. and Rivoirard, J. (1984) Une méthode de détermination d’anamorphose, Note du Centre de géostatistique, no. 916, École des mines de Paris, Fontainebleau, France. [Google Scholar]
  • Lantuéjoul, C. and Schmitt, M. (1991) Use of Two New Formulae to Estimate the Poisson Intensity of a Boolean Model. 13e Colloque GRETSI, 16-20 septembre, Juan-les-Pins. [Google Scholar]
  • Lantuéjoul, C. (1997) Iterative Algorithms for Conditional Simulations. In: Baafi et others, eds., Geostatistics Wollongong’96, 1, 27-40, Kluwer Academic Pub. [Google Scholar]
  • Le Loc'h, G. and Galli, A. (1997) Truncated Pluri-Gaussian Method: Theoretical and Practical Points of View. In: Baafi and others, eds., Geostatistics Wollongong'96, 1, 211-223, Kluwer Academic Pub. [Google Scholar]
  • LeRavalec, M.,Nœtinger, B. and Hu, L.Y. (2000) The FFT Moving Average (FFT-MA) Generator: An Efficient Numerical Method for Generating and Conditioning Gaussian Simulations. Math. Geology, 32, 6. [Google Scholar]
  • Le Ravalec-Dupin, M., Hu, L.Y. and Nœtinger, B. (2000) Sampling the Conditional Realization Space Using the Gradual Deformation Method. In: Kleingeld and Krige, eds., Geostatistics 2000 Cape Town, 1. [Google Scholar]
  • Le Ravalec, M., Hu, L.Y. and Nœtinger, B. (2001) Stochastic Reservoir Modeling Constrained to Dynamic Data: Local Calibration and Inference of the Structural Parameters. SPE Journal, March. [Google Scholar]
  • Le Ravalec-Dupin, M. and Fenwick, D. (2002) A Combined Geostatistical and Streamline-Based History Matching Procedure. Paper SPE 77378 in Proc. of the SPE Annual Technical Conference and Exhibition, San Antonio. [Google Scholar]
  • Lopez, S., Galli, A. and Cojan, I. (2001) Fluvial Meandering Channelized Reservoirs: A Stochastic & Process-Based Approach. In: Proc. of the of the Annual Conference of the International Association for Mathematical Geology, 6-12 September, Cancun, Mexico. [Google Scholar]
  • Marsily de, G.,Lavedan, G.,Boucher, M. and Fasanino, G. (1984) Interpretation of Interference Tests in a Well Field Using Geostatistical Techniques to Fit the Permeability Distribution in a Reservoir Model. In: Verly, G. and others, eds., Geostatistics for Natural Resources Characterization, Part 2, 831-849, D. Reidel Publ. Co. [Google Scholar]
  • Matheron, G. (1967) Éléments pour une théorie des milieux poreux, Masson, Paris. [Google Scholar]
  • Matheron, G. (1971) The Theory of Regionalized Variables and its Applications, Fascicule 5. Les Cahiers du Centre de morphologie mathématique, École des mines de Paris, Fontainebleau, France. [Google Scholar]
  • Matheron, G. (1973) The Intrinsic Random Functions and their Applications. Adv. Appl. Prob. 5, 439-468. [Google Scholar]
  • Matheron, G., Beucher, H., de Fouquet, C., Galli, A. and Ravenne, C. (1987) Conditional Simulation of the Geometry of Fluvio-Deltaic Reservoirs. Paper SPE 16753 in Proc. of the SPE Annual Technical Conference and Exhibition, Dallas. [Google Scholar]
  • Mezghani, M and Roggero, F. (2001) Combining Gradual Deformation and Upscaling Techniques for Direct Conditioning of Fine-Scale Reservoir Models to Dynamic Data. Paper SPE 71334 in Proc. of the SPE Annual Technical Conference and Exhibition, New Orleans. [Google Scholar]
  • Moulière, D., Beucher, H., Hu, L.Y., Fournier, F., Terdich, P., Melchiori, F. and Griffi, G., (1997) Integration of Seismic Derived Information for Reservoir Stochastic Modeling Using Truncated Gaussian Approach. In: E.Y. Baafi and N.A. Schofield, eds., Geostatistics Wollongong'96, 1, Kluwer Academic Pub. [Google Scholar]
  • Nœtinger, B (1993) A Pressure Moment Approach for Helping Pressure Transient Analysis in Complex Heterogeneous Reservoir. Paper SPE 26466 in Proc. of the SPE Annual Technical Conference and Exhibition, October, Dallas, USA. [Google Scholar]
  • Oliver, D.S.,Cunha, L.B. and Reynolds, A.C. (1997) Markov Chain Monte-Carlo Methods for Conditioning a Permeability Field to Pressure Data. Math. Geology, 29, 1, 61-91. [CrossRef] [Google Scholar]
  • Press, W.H, Teukolsky, S.A., Vettering, W.T. and Flannery, B.P. (1992) Numerical Recipes in Forthan. Cambridge University Press. [Google Scholar]
  • RamaRao, B.S.,LaVenue, A.M., de Marsily, G. and Marietta, M.G. (1995) Pilot Point Methodology for Automated Calibration of an Ensemble of Conditionally Simulated Transmissivity Fields, 1. Theory and Computational Experiments. Water Resour. Res., 31, 3, 475-493. [CrossRef] [Google Scholar]
  • Ravenne, C., Eschard, R., Galli, A., Mathieu, Y., Montadert, L. and Rudkiewicz, J.L. (1987) Heterogeneities and Geometry of Sedimentary Bodies in a Fluvio-Deltaic Reservoir. Paper SPE 16752 in Proc. of the SPE Annual Technical Conference and Exhibition, Dallas. [Google Scholar]
  • Reis, L.C. (2001) Intégration des données dynamiques dans un modèle géostatistique de réservoir. Thèse de doctorat, université Paris VI. [Google Scholar]
  • Roggero, F. and Hu, L.Y. (1998) Gradual Deformation of Continuous Geostatistical Models for History Matching. Paper SPE 49004 in Proc. of the SPE Annual Technical Conference and Exhibition, New Orleans. [Google Scholar]
  • Schaaf, T., Mezghani, M. and Chavent, G. (2002) Direct Conditioning of Fine-Scale Facies Models to Dynamic Data by Combining Gradual Deformation and Numerical Upscaling Techniques. In: Proc. of the 8th European Conference on Mathematics of Oil Recovery (ECMOR VIII), 3-6 Septembre, Freiberg, Germany. [Google Scholar]
  • Schaaf, T., Mezghani, M. and Chavent, G. (2003) In Search of an Optimal Parameterization: An Innovative Approach to Reservoir Data Integration. Paper SPE 84273 in Proc. of the SPE Annual Technical Conference and Exhibition, Denver. [Google Scholar]
  • Schmitt, M. (1991) Estimation of the Density in a Stationary Boolean Model. J. of Appl. Prob., 28. [Google Scholar]
  • Schmitt, M. and Beucher, H. (1997) On the Inference of the Boolean Model. In: E.Y. Baafi and N.A. Schofield, eds., Geostatistics Wollongong'96, 1, Kluwer Academic Pub. [Google Scholar]
  • Sen, M.K., Gupta, A.D., Stoffa, P.L. Lake, L.W. and Pope, G.A. (1992) Stochastic Reservoir Modeling Using Simulated Annealing and Genetic Algorithm. Paper SPE 24754 in Proc. of the SPE Annual Technical Conference and Exhibition, Washington, D.C. [Google Scholar]
  • Srivastava, R.M. (1994) The Interactive Visualization of Spatial Uncertainty. Paper SPE 27965 in Proc. of the University of Tulsa Centennial Petroleum Engineering Symposium, Tulsa. [Google Scholar]
  • Souza, O. (1997) Stratigraphie séquentielle et modélisation probabiliste des réservoirs d'un cône sous-marin profond. Thèse de doctorat, université Paris VI. [Google Scholar]
  • Stoyan, D.S., Kendall, W.S. and Mecke, J. (1995) Stochastic Geometry and its Applications, 2nd Edition, Wiley, Chichester. [Google Scholar]
  • Strebelle, S. and Journel, A. (2000) Sequential Simulation Drawing Structures from Training Images. In: Kleingeld and Krige, eds., Geostatistics 2000 Cape Town, 1. [Google Scholar]
  • Sun, N.Z. (1994) Inverse Problems in Groundwater Modeling, Kluwer Academic Pub., Dordrecht, The Netherlands. [Google Scholar]
  • Tarantola, A. (1987) Inverse Problem Theory - Methods for Data Fitting and Model Parameter Estimation, Elsevier, Amsterdam. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.