- Cheng Y., Montreuil C., Cavataio G., Lambert C. (2009) Sulfur tolerance and DeSOx studies on diesel SCR catalysts, SAE Int. J. Fuels Lubr. 1, 1, 471–476. https://doi.org/10.4271/2008-01-1023. [Google Scholar]
- Bataille F., Lemberton J.L., Michaud P., Pérot G., Vrinat M., Lemaire M., Schulz E., Breysse M., Kasztelan S. (2000) Alkyldibenzothiophenes hydrodesulfurization-promoter effect, reactivity, and reaction mechanism, J. Catal. 191, 409–422. https://doi.org/10.1006/jcat.1999.2790. [CrossRef] [Google Scholar]
- Choi K., Korai Y., Mochida I., Ryu J.W., Min W. (2004) Impact of removal extent of nitrogen species in gas oil on its HDS performance: An efficient approach to its ultra deep desulfurization, Appl. Catal. B-Environ. 50, 9–16. https://doi.org/10.1016/j.apcatb.2003.10.011. [Google Scholar]
- Girgis M.J., Gates B.C. (1991) Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing, Ind. Eng. Chem. Res. 30, 2021–2058. https://doi.org/10.1021/ie00057a001. [CrossRef] [Google Scholar]
- Álvarez A., Escobar J., Toledo J.A., Pérez V., Cortés M.A., Pérez M., Rivera E. (2007) HDS of straight-run gas oil at various nitrogen contents. Comparison between different reaction systems, Fuel 86, 9, 1240–1246. https://doi.org/10.1016/j.fuel.2006.08.001. [Google Scholar]
- Shen J., Semagina N. (2020) Inhibition of diolefin hydrogenation by quinoline, Energy Fuels 34, 7, 8769–8776. https://doi.org/10.1021/acs.energyfuels.0c01336. [Google Scholar]
- Laveille P., Chaudhry A.-H., Riva A., Salameh A., Singaravel G., Dufresne P., Morin S., Berthod M. (2018) Maximizing utilization of reactivated and left-over catalysts in heavy gas oil hydrotreater: A case study of ADNOC refining, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 59, 1–10. https://doi.org/10.2516/ogst/2018053. [CrossRef] [Google Scholar]
- Lehr M., Ohms R. (2016) Impact of Light Tight oils on Distillate Hydrotreater Operation, in: Processing Shale Feedstocks 2016, pp. 1–10. https://www.digitalrefining.com/article/1001241. [Google Scholar]
- Yang H., Chen J., Fairbridge C., Briker Y., Zhu Y.J., Ring Z. (2004) Inhibition of nitrogen compounds on the hydrodesulfurization of substituted dibenzothiophenes in light cycle oil, Fuel Process Technol. 85, 1415–1429. https://doi.org/10.1016/j.fuproc.2003.09.008. [Google Scholar]
- Al-Barood A., Stanislaus A. (2007) Ultra-deep desulfurization of coker and straight-run gas oils: Effect of lowering feedstock 95% boiling point, Fuel Process Technol. 88, 309–315. https://doi.org/10.1016/j.fuproc.2006.10.008. [Google Scholar]
- Prado G.H.C., Rao Y., de Klerk A. (2017) Nitrogen removal from oil: A review, Energy Fuels 31, 14–36. https://doi.org/10.1021/acs.energyfuels.6b02779. [Google Scholar]
- LaVopa V., Satterfield C.N. (1988) Poisoning of thiophene hydrodesulfurization by nitrogen compounds, J. Catal. 110, 375–387. https://doi.org/10.1016/0021-9517(88)90328-4. [Google Scholar]
- Kaluža L., Gulková D., Šolcová O., Žilková N., Čejka J. (2008) Hydrotreating catalysts supported on organized mesoporous alumina: Optimization of Mo deposition and promotional effects of Co and Ni, Appl. Catal. A-Gen. 351, 93–101. https://doi.org/10.1016/j.apcata.2008.09.002. [Google Scholar]
- Prada Silvy R., Lageshetty S.K. (2021) Conversion of heavy gasoil into ultra-low sulfur and aromatic diesel over NiWRu/TiO2-γAl2O3 catalysts: Role of titanium and ruthenium on improving catalytic activity, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 76, 5, 1–19. https://doi.org/10.2516/ogst/2020084. [Google Scholar]
- Kaluža L. (2015) Activity of transition metal sulfides supported on Al2O3, TiO2 and ZrO2 in the parallel hydrodesulfurization of 1-benzothiophene and hydrogenation of 1-methyl-cyclohex-1-ene, Reac. Kinet. Mech. Cat. 114, 781–794. https://doi.org/10.1007/s11144-014-0809-9. [Google Scholar]
- Liu D., Gui J., Sun Z. (2008) Adsorption structures of heterocyclic nitrogen compounds over Cu(I)Y zeolite: A first principle study on mechanism of the denitrogenation and the effect of nitrogen compounds on adsorptive desulfurization, J. Mol. Catal. A-Chem. 291, 1–2, 17–21. https://doi.org/10.1016/j.molcata.2008.05.014. [Google Scholar]
- Sano Y., Choi K., Korai Y., Mochida I. (2004) Adsorptive removal of sulfur and nitrogen species from a straight run gas oil over activated carbons for its deep HDS, Appl. Catal. B-Environ. 49, 4, 219–225. https://doi.org/10.1016/j.apcatb.2003.12.007. [Google Scholar]
- Li Z., Liang H., Li X., Yang C., Ge B., Xiong S., Zhang H., Wang T., Yuan P. (2020) Adjusting surface acidity of hollow mesoporous carbon nanospheres for enhanced adsorptive denitrogenation of fuels, Chem. Eng. Sci. 228, 115963, 1–11. https://doi.org/10.1016/j.ces.2020.115963. [Google Scholar]
- Li H., Eddaoudi M., O’Keeffe M., Yaghi O.M. (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402, 276–279. https://doi.org/10.1038/46248. [CrossRef] [Google Scholar]
- Yin D., Li C., Ren H., Shekhah O., Liu J., Liang C. (2017) Efficient Pd@MIL-101(Cr) hetero-catalysts for 2-butyne-1,4-diol hydrogenation exhibiting high selectivity, RSC Adv. 7, 1626–1633. https://doi.org/10.1039/c6ra25722d. [Google Scholar]
- Xu Y., Lv M., Yang H., Chen Q., Liu X., Wei F. (2015) BiVO4/MIL-101 composite having the synergistically enhanced visible light photocatalytic activity, RSC Adv. 5, 43473–43479. https://doi.org/10.1039/C4RA11383G. [Google Scholar]
- Liu Q., Ning L., Zheng S., Tao M., Shi Y., He Y. (2016) Adsorption of carbon dioxide by MIL-101(Cr): Regeneration conditions and influence of flue gas contaminants, Sci. Rep. 3, 2916, 1–6. https://doi.org/10.1038/srep02916. [Google Scholar]
- Chen M.-L., Zhou S.-Y., Xu Z., Ding L., Cheng Y.-H. (2019) Metal-organic frameworks of MIL-100(Fe, Cr) and MIL-101(Cr) for aromatic amines adsorption from aqueous solutions, Molecules 24, 3718, 1–13. https://doi.org/10.3390/molecules24203718. [Google Scholar]
- Bhattacharjee S., Chena C., Ahn W.-S. (2014) Chromium terephthalate metal-organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis, RSC Adv. 4, 52500–52525. https://doi.org/10.1039/c4ra11259h. [Google Scholar]
- Abedini H., Shariati A., Khosravi-Nikou M.R. (2020) Separation of propane/propylene mixture using MIL-101(Cr) loaded with cuprous oxide nanoparticles: Adsorption equilibria and kinetics study, Chem. Eng. J. 387, 124172, 1–10. https://doi.org/10.1016/j.cej.2020.124172. [Google Scholar]
- Chen Q., Wang M.-M., Hu X., Chen X.-W., Wang J.-H. (2016) An octamolybdate-metal organic framework hybrid for the efficient adsorption of Histidine-rich proteins, J. Mater. Chem. B 42, 6812–6819. https://doi.org/10.1039/C6TB02090A. [Google Scholar]
- Suresh M., Raju B.D., Rao K.S.R., Reddy K.R., Kantam M.L., Srinivasu P. (2014) Metal organic framework MIL-101(Cr) for dehydration reactions, J. Chem. Sci. 126, 527–532. https://doi.org/10.1007/s12039-014-0590-3. [Google Scholar]
- Akimana E., Wang J., Likhanova N.V., Chaemchuen S., Verpoort F. (2020) MIL-101(Cr) for CO2 conversion into cyclic carbonates, under solvent and co-catalyst free mild reaction conditions, Catalysts 10, 453, 1–11. https://doi.org/10.3390/catal10040453. [Google Scholar]
- Khan N.A., Jhung S.H. (2019) Phytic acid-encapsulated MIL-101(Cr): Remarkable adsorbent for the removal of both neutral indole and basic quinoline from model liquid fuel, Chem. Eng. J. 375, 121948, 1–8. https://doi.org/10.1016/j.cej.2019.121948. [Google Scholar]
- Mondol MdMH, Bhadra B.N., Park J.M., Jhung S.H. (2020) A remarkable adsorbent for removal of nitrogenous compounds from fuel: a metal-organic framework functionalized both on metal and ligand, Chem. Eng. J. 404, 126491, 1–9. https://doi.org/10.1016/j.cej.2020.126491. [Google Scholar]
- Nuzhdin A.L., Kovalenko K.A., Dybtsev D.N., Bukhtiyarova G.A. (2010) Removal of nitrogen compounds from liquid hydrocarbon streams by selective sorption on metal-organic framework MIL-101, Mendeleev Commun. 20, 1, 57–58. https://doi.org/10.1016/j.mencom.2010.01.022. [Google Scholar]
- Maes M., Trekels M., Boulhout M., Schouteden S., Vermoortele F., Alaerts L., Heurtaux D., Seo Y.-K., Hwang Y.K., Chang J.-S., Beurroies I., Denoyel R., Temst K., Vantomme A., Horcajada P., Serre C., De Vos D.E. (2011) Selective removal of N-heterocyclic aromatic contaminants from fuels by Lewis acidic metal-organic frameworks, Angew. Chem. Int. Ed. 50, 4210–4214. https://doi.org/10.1002/anie.201100050. [Google Scholar]
- Kim M.J., Park S.M., Song S.-J., Won J., Lee J.Y., Yoon M., Kim K., Seo G. (2011) Adsorption of pyridine onto the metal organic framework MIL-101, J. Colloid Interface Sci. 361, 612–617. https://doi.org/10.1016/j.jcis.2011.05.067. [PubMed] [Google Scholar]
- Pearson R.G. (1963) Hard and soft acids and bases, J. Am. Chem. Soc. 85, 3533–3539. https://doi.org/10.1021/ja00905a001. [Google Scholar]
- Laredo G.C., Vega-Merino P.M., Montoya-de la Fuente J.A., Mora-Vallejo R.J., Meneses-Ruiz E., Castillo J.J., Zapata-Rendón B. (2016) Comparison of the metal-organic framework MIL-101 (Cr) versus four commercial adsorbents for nitrogen compounds removal in diesel feedstocks, Fuel 180, 284–291. https://doi.org/10.1016/j.fuel.2016.04.038. [Google Scholar]
- Min W. (2002) A unique way to make ultra low sulfur diesel, Korean J. Chem. Eng. 19, 4, 601–606. https://doi.org/10.1007/BF02699303. [Google Scholar]
- Lee S.-W., Ryu J.W., Min W. (2003) SK hydrodesulfurization (HDS) pretreatment technology for ultralow sulfur diesel (ULSD) production, Catal. Surv. Asia 7, 4, 271–279. https://doi.org/10.1023/B:CATS.0000008166.74672.db. [Google Scholar]
- Hoekstra G. (2019) Real-world catalysts testing, 2019, in: Digital Refining, July 2019, pp. 1–6. https://www.digitalrefining.com/article/1002339. [Google Scholar]
- Stefanidis G.D., Bellos G.D., Papayannakos N.G. (2005) An improved weighted average reactor temperature estimation for simulation of adiabatic industrial hydrotreaters, Fuel Process Technol. 86, 1761–1775. https://doi.org/10.1016/j.fuproc.2005.04.002. [Google Scholar]
- Fujikawa T., Chiyoda O., Tsukagoshi M., Idei K., Takehara S. (1998) Development of a high activity HDS catalyst for diesel fuel: From basic research to commercial experience, Catal. Today 45, 307–312. https://doi.org/10.1016/S0920-5861(98)00235-1. [Google Scholar]
- Mora R.J., Montoya J.A., Laredo G.C., Meneses E., Castillo J.J., Zapata B. (2016) Process for reducing the content of organic nitrogen compounds from hydrotreating feedstocks for ultra-low sulfur production, US Patent 2016/0332138A1. [Google Scholar]
- Hong W.Y., Perera S.P., Burrows A.D. (2015) Manufacturing of metal-organic framework monoliths and their application in CO2 adsorption, Micropor. Mesopor. Mater. 214, 149–155. https://doi.org/10.1016/j.micromeso.2015.05.014. [Google Scholar]
- Hong W.Y., Perera S.P., Burrows A.D. (2020) Comparison of MIL-101(Cr) metal-organic framework and 13X zeolite monoliths for CO2 capture, Micropor. Mesopor. Mater. 308, 110525, 1–9. https://doi.org/10.1016/j.micromeso.2020.110525. [Google Scholar]
- Zeuthen P. (2019) A new generation of catalyst is born: TK-6001 HySwell, pp. 1–2. https://www.digitalrefining.com/article/1002269. [Google Scholar]
- Arandes J.M., Torre I., Azkoiti M.J., Ereña J., Bilbao J. (2008) Effect of atmospheric residue incorporation in the Fluidized Catalytic Cracking (FCC) feed on product stream yields and composition, Energy Fuels 22, 2149–2156. https://doi.org/10.1021/ef800031x. [Google Scholar]
- Jeon H.-R., Kim K.-D., Lee Y.-K. (2020) Highly active and stable MoWS2 catalysts in slurry phase hydrocracking of vacuum residue, J. Catal. 390, 117–125. https://doi.org/10.1016/j.jcat.2020.07.009. [Google Scholar]
- Ramírez L.F., Escobar J., Galván E., Vaca H., Murrieta F., Luna M.R.S. (2004) Evaluation of diluted and undiluted trickle-bed hydrotreating reactor with different catalyst volume, Pet. Sci. Technol. 22, 1–2, 157–175. https://doi.org/10.1081/LFT-120028530. [Google Scholar]
- Sau M., Basak K., Manna U., Santra M., Verma R.P. (2006) Effects of organic nitrogen compounds on hydrotreating and hydrocracking reactions, Catal. Today 109, 1–4, 112–119. https://doi.org/10.1016/j.cattod.2005.08.007. [Google Scholar]
- Bej S.K., Dalai D.K., Adjaye J. (2002) Kinetics of hydrodesulfurization of heavy gas oil derived from oil-sands bitumen, Pet. Sci. Technol. 20, 867–877. https://doi.org/10.1081/LFT-120003718. [Google Scholar]
- Mora R.J., Montoya J.A., Laredo G.C., Meneses E., Castillo J.J., Zapata B. (2017) Process for obtaining metal-organic materials with structure MIL- 101 (Cr) and MIL-101-Cr-Mx+, US Patent 2017/9,777,029 B2. [Google Scholar]
- Hao S.Z., Liu H., Guo B., Li H., Zhang J., Gan L., Xu Z., Chen L. (2007) Sol-gel synthesis of alumina using inorganic salt precursor, Acta Phys.-Chim. Sin. 23, 3, 289–294. [Google Scholar]
- Anastasova E.I., Ivanovski V., Fakhardo A.F., Lepeshkin A.I., Omar S., Drozdov A.S., Vinogradov V.V. (2017) A pure magnetite hydrogel: Synthesis, properties and possible applications, Soft Matter 13, 8651–8660. https://doi.org/10.1039/c7sm01702b. [PubMed] [Google Scholar]
- Myadam N.L., Nadargi D.Y., Gurav Nadargi J.D., Shaikh F.I., Chaskar M.G. (2020) A facile approach of developing Al/SnO2 xerogels via epoxide assisted gelation: A highly versatile route for formaldehyde gas sensors, Inorg. Chem. Commun. 116, 107901, 1–9. https://doi.org/10.1016/j.inoche.2020.107901. [Google Scholar]
- Du P.D., Thanh H.T.M., To T.C., Thang H.S., Tinh M.X., Tuyen T.N., Hoa T.T., Khieu D.Q. (2019) Metal-organic framework MIL-101: Synthesis and photocatalytic degradation of Remazol Black B Dye, J. Nanomater. 6061275, 1–15. https://doi.org/10.1155/2019/6061275. [Google Scholar]
- Huang X.-X., Qiu L.-G., Zhang W., Yuan Y.P., Jiang X., Xie A.-J., Shen Y.H., Zhu J.-F. (2012) Hierarchically mesostructured MIL-101 metal-organic frameworks: Supramolecular template-directed synthesis and accelerated adsorption kinetics for dye removal, CrystEngComm 14, 1613–1617. https://doi.org/10.1039/c1ce06138k. [Google Scholar]
- Liu S., Xu F., Liu L.-T., Zhou Y.-L., Zhao W.-X. (2017) Heat capacities and thermodynamic properties of Cr-MIL-101, J. Therm. Anal. Calorim. 129, 509–514. https://doi.org/10.1007/s10973-017-6168-9. [Google Scholar]
- Leng K., Sun Y., Li X., Sun S., Xu W. (2016) Rapid Synthesis of metal-organic frameworks MIL-101(Cr) without the addition of solvent and hydrofluoric acid, Cryst. Growth Des. 16, 1168–1171. https://doi.org/10.1021/acs.cgd.5b01696. [Google Scholar]
- Weckhuysen B.M., Verberckmoes A.A., Baets A.R.D., Schoonheydt R.A. (1997) Diffuse reflectance spectroscopy of supported chromium oxide catalysts: A self-modeling mixture analysis, J. Catal. 166, 160–171. https://doi.org/10.1006/jcat.1997.1518. [Google Scholar]
- Rivera-Torrente M., Pletcher P.D., Jongkind M.K., Nikolopoulos N., Weckhuysen B.M. (2019) Ethylene polymerization over metal-organic framework crystallites and the influence of linkers on their fracturing process, ACS Catal. 9, 3059–3069. https://doi.org/10.1021/acscatal.9b00150. [Google Scholar]
- Qiu S., Wang Y., Wan J., Han J., Ma Y., Wang S. (2020) Enhancing water stability of MIL-101(Cr) by doping Ni(II), Appl. Surf. Sci. 525, 146511, 1–7. https://doi.org/10.1016/j.apsusc.2020.146511. [Google Scholar]
- Sievers R.E., Bailar J.C. Jr (1962) Some metal chelates of ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and triethylenetetraminehexaacetic acid, Inorg. Chem. 1, 174–182. https://doi.org/10.1021/ic50001a035. [Google Scholar]
- Kayal S., Chakraborty A. (2018) Activated carbon (type Maxsorb-III) and MIL-101(Cr) metal organic framework based composite adsorbent for higher CH4 storage and CO2 capture, Chem. Eng. J. 334, 780–788. https://doi.org/10.1016/j.cej.2017.10.080. [Google Scholar]
- Elsayed E., Anderson P., Al-Dadah R., Mahmoud S., Elsayed A. (2019) MIL-101(Cr)/calcium chloride composites for enhanced adsorption cooling and water desalination, J. Solid State Chem. 277, 123–132. https://doi.org/10.1016/j.jssc.2019.05.026. [Google Scholar]
- Zhao T., Li S.-H., Shen L., Wang Y., Yang X.-Y. (2018) The sized controlled synthesis of MIL-101(Cr) with enhanced CO2 adsorption property, Inorg. Chem. Commun. 96, 47–51. https://doi.org/10.1016/j.inoche.2018.07.036. [Google Scholar]
- Kayal S., Sun B., Chakraborty A. (2015) Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks), Energy 91, 772–781. https://doi.org/10.1016/j.energy.2015.08.096. [Google Scholar]
- Zhao H., Li Q., Wang Z., Wu T., Zhang M. (2020) Synthesis of MIL-101(Cr) and its water adsorption performance, Micropor. Mesopor. Mater. 297, 110044, 1–7. https://doi.org/10.1016/j.micromeso.2020.110044. [Google Scholar]
- Wang S., Bromberg L., Schreuder-Gibson H., Hatton T.A. (2013) organophophorous ester degradation by chromium(III) terephthalate metal-organic framework (MIL-101) chelated to N, N-dimethylaminopyridine and related aminopyridines, ACS Appl. Mater. Interf. 5, 4, 1269–1278. https://doi.org/10.1021/am302359b. [Google Scholar]
- Jhung S.H., Lee J.H., Yoon J.W., Serre C., Férey G., Chang J.S. (2020) Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability, Adv. Mater. 19, 121–124. https://doi.org/10.1002/adma.200601604. [Google Scholar]
- Laredo G.C., Leyva S., Alvarez R., Mares M.T., Castillo J., Cano J.L. (2002) Nitrogen compounds characterization in atmospheric gas oil and light cycle oil from a blend of Mexican crudes, Fuel 81, 10, 1341–1350. https://doi.org/10.1016/S0016-2361(02)00047-9. [CrossRef] [Google Scholar]
- Zhang H., Song H. (2012) Study of adsorptive denitrogenation of diesel fuel over mesoporous molecular sieves based on breakthrough curves, Ind. Eng. Chem. Res. 51, 49, 16059–16065. https://doi.org/10.1021/ie302169r. [Google Scholar]
- Dichiara A.B., Weinstein S., Rogers R.E. (2015) On the choice of batch or fixed-bed adsorption processes for wastewater treatment, Ind. Eng. Chem. Res. 54, 34, 8579–8586. https://doi.org/10.1021/acs.iecr.5b02350. [Google Scholar]
- García-Gutiérrez J.L., Laredo G.C., Fuentes G.A., García-Gutiérrez P., Jiménez-Cruz F. (2014) Effect of nitrogen compounds in the hydrodesulfurization of straight-run gas oil using a CoMoP/γ-Al2O3 catalyst, Fuel 138, 98–103. https://doi.org/10.1016/j.fuel.2014.08.008. [Google Scholar]
- Wang Z., Sun Z., Kong L., Li G. (2013) Adsorptive removal of nitrogen-containing compounds from fuel by metal-organic frameworks, J. Energy Chem. 22, 869–875. https://doi.org/10.1016/S2095-4956(14)60266-7. [Google Scholar]
- Dorbon M., Bernasconi C. (1989) Nitrogen compounds in light cycle oils: identification and consequences of ageing, Fuel 68, 8, 1067–1074. https://doi.org/10.1016/0016-2361(89)90077-X. [Google Scholar]
- Shi Q., Xu C., Zhao S., Chung K.H., Zhang Y., Gao W. (2010) Characterization of basic nitrogen species in coker gas oils by positive-ion electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry, Energy Fuels 24, 1, 563–569. https://doi.org/10.1021/ef9008983. [Google Scholar]
- Xiaobo C., Yibin L., Jin W., Honghong S., Chaohe Y., Chunyi L. (2014) Characterization of nitrogen compounds in coker gas oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and Fourier transform infrared spectroscopy, Appl. Petrochem. Res. 4, 4, 417–422. https://doi.org/10.1007/s13203-014-0083-9. [PubMed] [Google Scholar]
- Ahmed I., Khan N.A., Jhung S.H. (2013) Graphite oxide/metal-organic framework (MIL-101): Remarkable performance in the adsorptive denitrogenation of model fuels, Inorg. Chem. 52, 14155–14161. https://doi.org/10.1021/ic402012d. [PubMed] [Google Scholar]
- Ahmed I., Hasan Z., Khan N.A., Jhung S.H. (2013) Adsorptive denitrogenation of model fuels with porous metal-organic frameworks (MOFs): Effect of acidity and basicity of MOFs, Appl. Catal. B-Environ. 129, 123–129. https://doi.org/10.1016/j.apcatb.2012.09.020. [Google Scholar]
- Sarker M., Song J.Y., Jeong A.R., Min K.S., Jhung S.H. (2018) Adsorptive removal of indole and quinoline from model fuel using adenine-grafted metal-organic frameworks, J. Hazard. Mat. 355, 593–601. https://doi.org/10.1016/j.jhazmat.2017.10.041. [Google Scholar]
- Min S., Choi K.-I., Khang S.Y., Min D.-S., Ryu J.-W., Yoo K.S., Kim J.-H. (2001) Method for manufacturing cleaner fuels, US Patent 6,248,230 B1. [Google Scholar]
- Bandyopadhyay R., Upadhyayula S. (2018) Thermodynamic analysis of diesel hydrotreating reactions, Fuel 214, 15, 314–321. https://doi.org/10.1016/j.fuel.2017.10.015. [Google Scholar]
- Escobar J., Gutiérrez A., Barrera M.C., Colín J.A. (2016) NiMo/alumina hydrodesulfurization catalyst modified by saccharose. Effect of addition stage of organic modifier, Can. J. Chem. Eng. 94, 66–74. https://doi.org/10.1002/cjce.22334. [Google Scholar]
- Song C. (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel, Catal. Today 86, 1–4, 211–263. https://doi.org/10.1016/S0920-5861(03)00412-7. [CrossRef] [Google Scholar]
- Aleksandrov P.V., Bukhtiyarova G.A., Reshetnikov S.I. (2019) Study of the influence exerted by addition of coker gas oil to straight-run gas oil on the process of hydrotreating in the presence of CoMo/Al2O3 catalyst, Russ. J. Appl. Chem. 92, 8, 1077–1083. https://doi.org/10.1134/S1070427219080044. [Google Scholar]
- Ancheyta J., Angeles M.J., Macías M.J., Marroquıín G., Morales R. (2002) Changes in apparent reaction order and activation energy in the hydrodesulfurization of real feedstocks, Energy Fuels 16, 1, 189–193. https://doi.org/10.1021/ef0101917. [Google Scholar]
- Al-Barood A., Qabazard H., Stanislaus A. (2005) A comparative study of the HDS kinetics of straight run and coker gas oils under deep desulfurization conditions, Pet. Sci. Technol. 23, 7–8, 749–760. https://doi.org/10.1081/LFT-200031084. [Google Scholar]
- Ferdous D., Dalai A.K., Adjaye J. (2005) Hydrodenitrogenation and hydrodesulphurization of heavy gas oil using NiMo/Al2O3 catalyst containing phosphorus: Experimental and kinetic studies, Can. J. Chem. Eng. 83, 5, 855–864. https://doi.org/10.1002/cjce.5450830507. [Google Scholar]
- Vrinat M.L. (1983) The kinetics of the hydrodesulfurization process – a review, Appl. Catal. 6, 2, 137–158. https://doi.org/10.1016/0166-9834(83)80260-7. [CrossRef] [Google Scholar]
- Louloudi A., Papayannakos N. (2016) Performance of Ni/Si-pillared clay catalytic extrudates for benzene hydrogenation reaction, Appl. Clay Sci. 123, 47–55. https://doi.org/10.1016/j.clay.2015.12.034. [Google Scholar]
- Williamson L. (2020) Effective preparation for turnarounds, in: Revamps, 2-10-2020, pp. 1–5. https://www.digitalrefining.com/magazines. [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
|
|
---|---|---|
Article Number | 56 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.2516/ogst/2021038 | |
Published online | 30 August 2021 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.