- Abbasi M., Mirzaei A.A., Atashi H. (2019) Hydrothermal synthesis of Fe-Ni-Ce nano-structure catalyst for Fischer-Tropsch synthesis: Characterization and catalytic performance, J. Alloys Compd. 799, 546–555. https://doi.org/10.1016/j.jallcom.2019.05.314. [Google Scholar]
- Akbari M., Mirzaei A.A., Atashi H., Arsalanfar M. (2018) Effect of microemulsion parameters on product selectivity of MgO-supported iron–cobalt–manganese–potassium nanocatalyst for Fischer-Tropsch synthesis using response surface methodology, J. Taiwan Inst. Chem. Eng. 91, 396–404. https://doi.org/10.1016/j.jtice.2018.06.004. [Google Scholar]
- Einbeigi A., Atashi H., Mirzaei A.A., Zohdi-Fasaei H., Golestan S. (2019) Development of new comprehensive kinetic models for Fischer-Tropsch synthesis process over Fe–Co/γ-Al2O3 nanocatalyst in a fixed-bed reactor, J. Taiwan Inst. Chem. Eng. 103, 57–66. https://doi.org/10.1016/j.jtice.2019.07.004. [Google Scholar]
- Torres Galvis H.M., de Jong K.P. (2013) Catalysts for production of lower olefins from synthesis gas: a review, ACS Catal. 3, 2130–2149. https://doi.org/10.1021/cs4003436. [Google Scholar]
- Mansouri M., Atashi H., Tabrizi F.F., Mirzaei A.A., Mansouri G. (2013) Kinetics studies of nano-structured cobalt–manganese oxide catalysts in Fischer-Tropsch synthesis, J. Ind. Eng. Chem. 19, 1177–1183. https://doi.org/10.1016/j.jiec.2012.12.015. [Google Scholar]
- Dry M.E. (1996) Practical and theoretical aspects of the catalytic Fischer-Tropsch process, Appl. Catal. A: Gen. 138, 319–344. https://doi.org/10.1016/0926-860X(95)00306-1. [Google Scholar]
- Dry M.E. (2004) Present and future applications of the Fischer-Tropsch process, Appl. Catal. A: Gen. 276, 1–3. https://doi.org/10.1016/j.apcata.2004.08.014. [Google Scholar]
- Steynberg A.P. (2004) Chapter 1 – Introduction to Fischer-Tropsch Technology, in Studies in Surface Science and Catalysis, Vol. 152, A. Steynberg, M. Dry (eds), Elsevier, Amsterdam, pp. 1–63. https://doi.org/10.1016/S0167-2991(04)80458-0. [Google Scholar]
- Geerlings J.J.C., Wilson J.H., Kramer G.J., Kuipers H.P.C.E., Hoek A., Huisman H.M. (1999) Fischer-Tropsch technology – from active site to commercial process, Appl. Catal. A Gen. 186, 27–40. https://doi.org/10.1016/S0926-860X(99)00162-3. [Google Scholar]
- Abbasi S., Abbasi M., Tabkhi F., Akhlaghi B. (2020) Syngas production plus reducing carbon dioxide emission using dry reforming of methane: utilizing low-cost Ni-based catalysts, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 75, 22. https://doi.org/10.2516/ogst/2020016. [Google Scholar]
- Van Der Laan G.P., Beenackers A. (1999) Kinetics and selectivity of the Fischer-Tropsch synthesis: a literature review, Catal. Rev. 41, 255–318. https://doi.org/10.1081/CR-100101170. [CrossRef] [Google Scholar]
- Wu X., Qian W., Ma H., Zhang H., Liu D., Sun Q., Ying W. (2019) Li-decorated Fe-Mnnanocatalyst for high-temperature Fischer-Tropsch synthesis of light olefins, Fuel 257, 116101. https://doi.org/10.1016/j.fuel.2019.116101. [Google Scholar]
- Jiao F., Li J., Pan X., Xiao J., Li H., Ma H., Wei M., Pan Y., Zhou Z., Li M., Miao S., Li J., Zhu Y., Xiao D., He T., Yang J., Qi F., Fu Q., Bao X. (2016) Selective conversion of syngas to light olefins, Science 351, 1065–1068. https://doi.org/10.1126/science.aaf1835. [Google Scholar]
- Arsalanfar M., Mirzaei A., Atashi H., Bozorgzadeh H., Vahid S., Zare A. (2012) An investigation of the kinetics and mechanism of Fischer-Tropsch synthesis on Fe–Co–Mn supported catalyst, Fuel Process. Technol. 96, 150–159. https://doi.org/10.1016/j.fuproc.2011.12.018. [Google Scholar]
- Liu Y., Teng B.-T., Guo X.-H., Li Y., Chang J., Tian L., Hao X., Wang Y., Xiang H.-W., Xu Y.-Y., Li Y.-W. (2007) Effect of reaction conditions on the catalytic performance of Fe-Mn catalyst for Fischer-Tropsch synthesis, Mol. Catal. 272, 182–190. https://doi.org/10.1016/j.molcata.2007.03.046. [Google Scholar]
- Li X., Luo M., Asami K. (2004) Direct synthesis of middle iso-paraffins from synthesis gas on hybrid catalysts, Catal. Today 89, 439–446. https://doi.org/10.1016/j.cattod.2004.03.054. [Google Scholar]
- Qian W., Zhang H., Ying W., Fang D. (2013) The comprehensive kinetics of Fischer-Tropsch synthesis over a Co/AC catalyst on the basis of CO insertion mechanism, Chem. Eng. J. 228, 526–534. https://doi.org/10.1016/j.cej.2013.05.039. [Google Scholar]
- Luo M., Hamdeh H., Davis B.H. (2009) Fischer-Tropsch Synthesis: Catalyst activation of low alpha iron catalyst, Catal. Today 140, 127–134. https://doi.org/10.1016/j.cattod.2008.10.004. [Google Scholar]
- Cano L.A., Cagnoli M.V., Bengoa J.F., Alvarez A.M., Marchetti S.G. (2011) Effect of the activation atmosphere on the activity of Fe catalysts supported on SBA-15 in the Fischer-Tropsch Synthesis, J. Catal. 278, 310–320. https://doi.org/10.1016/j.jcat.2010.12.017. [Google Scholar]
- Lox E.S., Marin G.B., De Grave E., Bussière P. (1988) Characterization of a promoted precipitated iron catalyst for Fischer-Tropsch synthesis, Appl. Catal. 40, 197–218. https://doi.org/10.1016/S0166-9834(00)80438-8. [Google Scholar]
- Dry M.E. (1981) The Fischer-Tropsch synthesis, in Catalysis Science and Technology, Vol. 1, J.R. Anderson, M. Boudart (eds.), Springer-Verlag, Berlin, pp. 159–255. [Google Scholar]
- King D., Cusumano J., Garten R.L. (1981) A technological perspective for catalytic processes based on synthesis gas, Catal. Rev. 23, 233–263. https://doi.org/10.1080/03602458108068077. [Google Scholar]
- Fernandes F.A.N., Sousa E.M.M. (2006) Fischer-Tropsch synthesis product grade optimization in a fluidized bed reactor, AIChE J. 52, 2844–2850. https://doi.org/10.1002/aic.10887. [Google Scholar]
- Feyzi M., Khodaei M.M., Shahmoradi J. (2015) Preparation and characterization of promoted Fe–Mn/ZSM-5 nano catalysts for CO hydrogenation, Int. J. Hydrog. Energy 40, 14816–14825. https://doi.org/10.1016/j.ijhydene.2015.09.020. [Google Scholar]
- Barrault J., Renard C. (1985) Selective hydrocondensation of carbon monoxide into light olefins with iron-manganese catalysts, Appl. Catal. 14, 133–143. https://doi.org/10.1016/S0166-9834(00)84350-X. [Google Scholar]
- Yang Y., Xiang H.-W., Xu Y.-Y., Bai L., Li Y.W. (2004) Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis, Appl. Catal A: Gen. 266, 181–194. https://doi.org/10.1016/j.apcata.2004.02.018. [Google Scholar]
- Yang Y., Xiang H.W., Tian L., Wang H., Zhang C.H., Tao Z.-C., Xu Y.Y., Bing Z., Li Y.W. (2005) Structure and Fischer-Tropsch performance of iron–manganese catalyst incorporated with SiO2, Appl. Catal A: Gen. 284, 105–122. https://doi.org/10.1016/j.apcata.2005.01.025. [Google Scholar]
- Zhang X., Liu Y., Liu G., Kurokawa Y., Fan R., Tao K., Meng F., Jin Q., Kawabata T., Matsuda K., Ikeno S., Tsubaki N. (2010) One-Step Preparation of Bimodal Fe–Mn–K/SiO2 Catalyst and its Catalytic Performance of Slurry Phase Fischer-Tropsch Synthesis, Catal. Lett. 139, 7–16. https://doi.org/10.1007/s10562-010-0381-5. [Google Scholar]
- Yang Y., Xiang H., Zhang R., Zhong B., Li Y.W. (2005) A highly active and stable Fe-Mn catalyst for slurry Fischer-Tropsch synthesis, Catal. Today 106, 170–175. https://doi.org/10.1016/j.cattod.2005.07.127. [Google Scholar]
- Herranz T., Rojas S., Pérez-Alonso F., Ojeda M., Terreros P., Fierro J.L.G. (2006) Hydrogenation of carbon oxides over promoted Fe-Mn catalysts prepared by the microemulsion methodology, Appl. Catal A: Gen. 311, 66–75. https://doi.org/10.1016/j.apcata.2006.06.007. [Google Scholar]
- Zhang C.-H., Yang Y., Teng B.-T., Li T.-Z., Zheng H.-Y., et al. (2006) Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper, J. Catal. 237, 405–415. https://doi.org/10.1016/j.jcat.2005.11.004. [Google Scholar]
- Maiti G.C., Malessa R., Baerns M. (1983) Iron/manganese oxide catalysts for fischer-tropsch synthesis: Part I: structural and textural changes by calcination, reduction and synthesis, Appl. Catal. 5, 151–170. https://doi.org/10.1016/0166-9834(83)80129-8. [Google Scholar]
- Taherzadeh Lari T., Mirzaei A.A., Atashi H. (2016) Influence of fabrication temperature and time on light olefin selectivity of iron–cobalt–cerium mixed oxide nanocatalyst for CO hydrogenation, Ind. Eng. Chem. Res. 55, 12991–13007. https://doi.org/10.1021/acs.iecr.6b03171. [Google Scholar]
- Barrault J., Probst S., Alouche A., Percheron-Guecan A., Paul-Boncour V., Primet M. (1991) Characterization and catalytic properties of nickel oxioe supported on rare earth oxides. Description of the metal – support interaction, Stud. Surf. Sci. Catal. 61, 357–365. https://doi.org/10.1016/S0167-2991(08)60101-9. [Google Scholar]
- Barrault J., Guilleminot A., Achard J., Paul-Boncour V., Percheron-Guegan A. (1986) Hydrogenation of carbon monoxide on carbon-supported cobalt rare earth catalysts, Appl. Catal. 21, 307–312. https://doi.org/10.1016/S0166-9834(00)81363-9. [Google Scholar]
- Cheng K., Ordomsky V.V., Virginie M., Legras B., Chernavskii P.A., et al. (2014) Support effects in high temperature Fischer-Tropsch synthesis on iron catalysts, Appl. Catal A: Gen. 488, 66–77. https://doi.org/10.1016/j.apcata.2014.09.033. [Google Scholar]
- Bao J., Yang G., Okada C., Yoneyama Y., Tsubaki N. (2011) H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas, Appl. Catal A: Gen. 394, 195–200. https://doi.org/10.1016/j.apcata.2010.12.041. [Google Scholar]
- Suo H., Wang S., Zhang C., Xu J., Wu B., Yang Y. (2012) Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts, J. Catal. 286, 111–123. https://doi.org/10.1016/j.jcat.2011.10.024. [Google Scholar]
- De Jong K.P., Geus J.W. (2000) Carbon nanofibers: catalytic synthesis and applications, Catal. Rev. 42, 481–510. https://doi.org/10.1081/CR-100101954. [Google Scholar]
- Rankin J.L., Bartholomew C.H. (1986) Effects of potassium and calcination pretreatment on the adsorption and chemical/physical properties of FeSiO2, J. Catal. 100, 533–540. https://doi.org/10.1016/0021-9517(86)90126-0. [Google Scholar]
- Rankin J.L., Bartholomew C.H. (1986) Effects of calcination on the CO hydrogenation activity/selectivity properties of potassium-promoted iron/silica, J. Catal. 100, 526–532. https://doi.org/10.1016/0021-9517(86)90125-9. [Google Scholar]
- Feyzi M., Irandoust M., Mirzaei A.A. (2011) Effects of promoters and calcination conditions on the catalytic performance of iron–manganese catalysts for Fischer-Tropsch synthesis, Fuel Process Technol. 92, 1136–1143. https://doi.org/10.1016/j.fuproc.2011.01.010. [Google Scholar]
- Torshizi H.O., Vahid S., Mirzaei A.A. (2014) Kinetics modeling of Fischer-Tropsch synthesis on the unsupported Fe-Co-Ni (ternary) catalyst prepared using co-precipitation procedure, J. Nat. Gas Sci. Eng. 17, 110–118. https://doi.org/10.1016/j.fuel.2014.09.093. [Google Scholar]
- Mirzaei A.A., Galavy M., Beigbabaei A., Eslamimanesh V. (2007) Preparation and operating conditions for cobalt cerium oxide catalysts used in the conversion of synthesis gas into light olefins, J. Iran. Chem. Soc. 4, 347–363. https://doi.org/10.1007/BF03245986. [Google Scholar]
- Mirzaei A.A., Galavy M., Eslamimanesh V. (2008) SEM and BET Methods for investigating the structure and morphology of Co–Ce catalysts for production of light olefins, Aust. J. Chem. 61, 144–152. https://doi.org/10.1071/CH07130. [Google Scholar]
- Mirzaei A.A., Shahriari S., Arsalanfar M. (2011) Effect of preparation conditions on the catalytic performance of Co/Ni catalysts for CO hydrogenation, J. Nat. Gas Sci. Eng. 3, 537–546. https://doi.org/10.1016/j.jngse.2011.06.003. [Google Scholar]
- Arsalanfar M., Mirzaei A.A., Bozorgzadeh H.R., Samimi A., Ghobadi R. (2014) Effect of support and promoter on the catalytic performance and structural properties of the Fe–Co–Mn catalysts for Fischer-Tropsch synthesis, J. Ind. Eng. Chem. 20, 1313–1323. https://doi.org/10.1016/j.jiec.2013.07.011. [Google Scholar]
- Mirzaei A.A., Arsalanfar M., Bozorgzadeh H.R., Samimi A.R. (2014) A review of Fischer-Tropsch synthesis on the cobalt based catalysts, Phys. Chem. Res. 2, 179–201. https://doi.org/10.22036/pcr.2014.5786. [Google Scholar]
- Shroff M.D., Kalakkad D.S., Coulter K.E., Kohler S.D., Harrington M.S., et al. (1995) Activation of precipitated iron Fischer-Tropsch synthesis catalysts, J. Catal. 156, 185–207. https://doi.org/10.1006/jcat.1995.1247. [Google Scholar]
- Golestan S., Mirzaei A.A., Atashi H. (2017) Fischer-Tropsch synthesis over an iron–cobalt–manganese (ternary) nanocatalyst prepared by hydrothermal procedure: Effects of nanocatalyst composition and operational conditions, Int. J. Hydrog. Energy 42, 9816–9830. https://doi.org/10.1016/j.ijhydene.2017.01.162. [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.2516/ogst/2020089 | |
Published online | 03 February 2021 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.