- Mintyene B.J. (2010) Commerce de bois légal: politiques publiques et privées « L’expérience au Cameroun », s.n., Douala, p. 20. [Google Scholar]
- Kamkuimo P., Ayouba S., Mbarga A. (2018) Étude sur la situation de référence de valorisation des rebuts de l’exploitation forestière et de scierie dans la région de l’Est-Cameroun, ASD. https://www.academia.edu/download/58307181/Rapport_etude_de_reference_valorisation_rebuts_Est_Cameroun_2018.pdf. [Google Scholar]
- Samomssa I., Nono Y.J., Tsamo C., Dinica M.R., Kamga R. (2019) Influence of physico-chemical parameters on fuel briquettes properties formulated with mixture of biomasses, J. Env. Sci. Pollut. Res. 5, 2, 338–341. https://doi.org/10.30799/jespr.165.19050202. [CrossRef] [Google Scholar]
- Yaser A.Z., Rahman R.A., Kalil M.S. (2007) Co-composting of palm oil mill sludge-sawdust, Pak. J. Biol. Sci. 10, 4473–4478. https://doi.org/10.3923/pjbs.2007.4473.4478. [CrossRef] [PubMed] [Google Scholar]
- Oguntoke O., Otusanya O.K., Annegarn H.J. (2013) Emission of pollutants from wood waste incineration at sawmills in Abeokuta metropolis, Nigeria Int. J. Env. Stud. 70, 6, 964–975. https://doi.org/10.1080/00207233.2013.845709. [CrossRef] [Google Scholar]
- United Nations, Department of Economic and Social Affairs, Population Division. 2019. World Population Prospects 2019: Highlights, 17 June 2019. https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html [Google Scholar]
- WEO (World Energy Outlook) (2019) Rapport de l’Agence Internationale de l’énergie (AIE), https://www.iea.org/reports/world-energy-outlook-2019. [Google Scholar]
- Yang B., Dai Z., Ding S., Wyman C.E. (2011) Enzymatic hydrolysis of cellulosic biomass, Biofuels 2, 4, 421–450. https://doi.org/10.4155/bfs.11.116. [Google Scholar]
- Doyon M., Mondon M., Mondor S. (2011) Impacts du developpement des biocaburants de seconde génération sur le marché des matières residuelles, CIRANO, Montréal. [Google Scholar]
- Nzali B.T., Mvogo P.O., Ali A., Mouangue R. (2019) Effect of particle size on syngas production using sawdust of Cameroonian Triplochiton scleroxylon, Scientific African 6, e00182. https://doi.org/10.1016/j.sciaf.2019.e00182. [Google Scholar]
- Gollakota A.R.K., Kishore N., Gu S. (2017) A review on hydrothermal liquefaction of biomass, Renew. Sust. Energ. Rev., 81, 1378–1392. https://doi.org/10.1016/j.rser.2017.05.178. [CrossRef] [Google Scholar]
- Toor S.S., Rosendahl L., Rudolf A. (2011) Hydrothermal liquefaction of biomass: A review of subcritical water technologies, Energy 36, 2328–2342. https://doi:10.1016/j.energy.2011.03.013. [CrossRef] [Google Scholar]
- Mesa L., González E., Cara C., González M., Castro E., Mussatto S.I. (2011) The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse, Chem. Eng. J. 168, 3, 1157–1162. https://doi:10.1016/j.cej.2011.02.003. [Google Scholar]
- Ogier J.C., Leygue J.P., Ballerini D., Pourquie J., Rigal L. (1999) Production d’éthanol à partir de biomasse lignocellulosique, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 54, 1, 67–94. https://doi.org/10.2516/ogst:1999004. [CrossRef] [Google Scholar]
- Wildschut J., Smit A.T., Reith J.H., Huijgen W.J. (2013) Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose, Bioresour. Technol. 135, 58–66. https://doi.org/10.1016/j.biortech.2012.10.050. [Google Scholar]
- Zhao X., Li S., Wu R., Liu D. (2017) Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures, Biofuel. Bioprod. Bioref. 11, 567–590. https://doi.org/10.1002/bbb.1768. [CrossRef] [Google Scholar]
- Zhou Z., Lei F., Li P., Jiang J. (2018) Lignocellulosic biomass to biofuels and biochemicals, a comprehensive review with a focus on ethanol organosolv pretreatment technology, Biotech. Bioeng., 115, 2683–2702. https://doi.org/10.1002/bit.26788. [CrossRef] [Google Scholar]
- Demirbas A. (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections, Energy Convers. Manage. 49, 8, 2106–2116. https://doi.org/10.1016/j.enconman.2008.02.020. [CrossRef] [Google Scholar]
- Boussarsar H. (2008) Application de traitements thermique et enzymatique de solubilisation et saccharification de la fraction hemicellulosique en vue de la valorisation de la bagasse de canne à sucre. Thèse de doctorat en Chimie physique industrielle et génie biologique, Soutenue en 2008 à Reims en cotutelle avec l'Université de Sfax. 201p. http://www.theses.fr/2008REIMS019. [Google Scholar]
- Fan T.L., Lee Y.H., Gharpuray M.M. (1982) The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis, Microbial reactions, Springer, Berlin, Heidelberg, pp. 157–187. [CrossRef] [Google Scholar]
- Nanssou P.A.K., Nono Y.J., Kapseu C. (2016) Pretreatment of cassava stems and peelings by thermohydrolysis to enhance hydrolysis yield of cellulose in bioethanol production process, Renew. Energ. 97, 252–265. https://doi.org/10.1016/j.renene.2016.05.050. [CrossRef] [Google Scholar]
- Van Soest P., Robertson J. (1985) Analysis of forages and fibrous foods, Department of Animal Science, Cornell University, Ithaca, NY, USA. [Google Scholar]
- Klason P. (1908) Chemical composition of deal (Fir wood), Ark. Kemi. Mineral. Geol. 3, 1–10. [Google Scholar]
- N’Diaye S., Rigal L., Larocque P., Vidal P.F. (1996) Extraction of hemicelluloses from poplar, Populus tremuloides, using an extruder-type twin-screw reactor: a feasibility study, Bioresour. Technol. 57, 1, 61–67. https://doi.org/10.1016/0960-8524(96)00041-7. [Google Scholar]
- Godin B., Ghysel F., Agneessens R., Schmit T., Gofflot S., Lamaudière S., Delcarte J. (2010) Détermination de la cellulose, des hémicelluloses, de la lignine et des cendres dans diverses cultures lignocellulosiques dédiées à la production de bioéthanol de deuxième génération[Cellulose, hemicelluloses, lignin, and ash contents in various lignocellulosic crops for second generation bioethanol production], BASE 14, 549. https://popups.uliege.be/1780-4507/index.php?id=6186. [Google Scholar]
- Park N., Kim Y.H., Koo B.W., Yeo H., Choi I.G. (2010) Organosolv pretreatment with various catalysts for enhancing enzymatic, Bioresour. Technol., 101, 18, 7057–7064. https://doi.org/10.1016/j.biortech.2010.04.020. [Google Scholar]
- Carrasco R.C., Oncina J. (1994) Learning stochastic regular grammars by means of a state merging method, in: International Colloquium on Grammatical Inference, Springer, Berlin, Heidelberg, pp. 139–152. https://link.springer.com/chapter/10.1007/3-540-58473-0_144. [CrossRef] [Google Scholar]
- Kabel M.A., Bos G., Zeevalking J., Voragen A.G., Schols H.A. (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw, Bioresour. Technol. 98, 10, 2034–2042. https://doi.org/10.1016/j.biortech.2006.08.006. [Google Scholar]
- Pan X., Arato C., Gilkes N., Gregg D., Mabee W., Pye K., Saddler J. (2005) Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products, Biotechnol. Bioeng. 90, 4, 473–481. https://doi.org/10.1002/bit.21883. [CrossRef] [PubMed] [Google Scholar]
- Joglekar A.M., May A.T. (1987) Product excellence through design of experiments, Cereal Foods World 32, 12, 857. [Google Scholar]
- Baş D., Boyacı İ.H. (2007) Modeling and optimization I: Usability of response surface methodology, J. Food Eng. 78, 3, 836–845. https://doi.org/10.1016/j.jfoodeng.2005.11.024. [Google Scholar]
- Dalgaard P., Jørgensen L.V. (1998) Predicted and observed growth of Listeria monocytogenes in seafood challenge tests and in naturally contaminated cold-smoked salmon, Int. J. Food Microbiol. 40, 1, 105–115. https://doi.org/10.1016/S0168-1605(98)00019-1. [CrossRef] [PubMed] [Google Scholar]
- Fisher E.H., Stein E.A. (1961) DNS colorimetric determination of available carbohydrates in foods, Biochem. Prep. 8, 30–37. [Google Scholar]
- Akpinar O., Serdal S., Okan L., Abdulvahit S. (2012) Evaluation of antioxidant activity of dilute acid hydrolysate of wheat straw during xylose production, Ind. Crops Prod. 40, 39–44. https://doi.org/10.1016/j.indcrop.2012.02.035. [Google Scholar]
- Hashimoto S., Shogren M.D., Pomeranz Y. (1987) Cereal pentosans: their estimation and significance. I. Pentosans in wheat and milled wheat products, Cereal Chem. 64, 1, 30–34. [Google Scholar]
- Kanchanalai P., Temani G., Kawajiri Y., Realff M.J. (2016) Reaction kinetics of concentrated-acid hydrolysis for cellulose and hemicellulose and effect of crystallinity, BioResources 11, 1, 1672–1689. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes. [CrossRef] [Google Scholar]
- Amendola D., De Faveri D.M., Egües I., Serrano L., Labidi J., Spigno G. (2012) Autohydrolysis and organosolv process for recovery of hemicelluloses, phenolic compounds and lignin from grape stalks, Bioresour. Technol. 107, 267–274. https://doi.org/10.1016/j.biortech.2011.12.108. [Google Scholar]
- Brosse N., Sannigrahi P., Ragauskas A. (2009) Pretreatment of Miscanthus x giganteus using the ethanol organosolv process for ethanol production, Ind. Eng. Chem. Res. 48, 8328–8334. https://doi.org/10.1021/ie9006672. [Google Scholar]
- Babier G. (2010) Relation structure/réactivité en conversion hydrothermale des macromolécules de lignocelluloses, ICMCB – Institut de Chimie de la Matière Condensée de Bordeaux. https://tel.archives-ouvertes.fr/tel-00562111 [Google Scholar]
- Paszner L., Cho H.J. (1989) Organosolv pulping: acidic catalysis options and their effect on fiber quality and delignification, Tappi J. 72, 2, 135–142. https://doi.org/10.1016/j.indcrop.2014.11.018. [Google Scholar]
- Vallejos M.E., Zambon M.D., Area M.C., Curvelo A.A.S. (2015) Low liquid-solid ratio fractionation of sugarcane bagasse by hot water autohydrolysis and organosolv delignification, Ind. Crops Prod. 65, 349–353. https://doi.org/10.1016/j.indcrop.2014.11.018. [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
|
|
---|---|---|
Article Number | 23 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.2516/ogst/2021004 | |
Published online | 24 March 2021 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.