Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 24
Number of page(s) 10
DOI https://doi.org/10.2516/ogst/2021003
Published online 31 March 2021
  • Feng Y., Arlanoglu C., Podnos E., Becker E., Gray K.E. (2015) Finite-element studies of hoop-stress enhancement for wellbore strengthening, SPE Drill. Complet. 30, 38–51. [Google Scholar]
  • Xu C.Y., Kang Y., Chen F., You Z. (2017) Analytical model of plugging zone strength for drill-in fluid loss control and formation damage prevention in fractured tight reservoir, J. Pet. Sci. Eng. 149, 686–700. [Google Scholar]
  • Zhang J.B., Wang Z.Y., Liu S., Zhang W.G. (2019) Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety. Appl. Energy 253, 1. [Google Scholar]
  • Zhang L.S., Bian Y.H., Zhang S.Y., Yan Y.F. (2019) A new analytical model to evaluate uncertainty of wellbore collapse pressure based on advantageous synergies of different strength criteria, Rock Mech. Rock Eng. 52, 2649–2664. [Google Scholar]
  • Rojas J.C., Bern P.A., Ftizgerald B.L., Modi S., Bezant P.N. (1998) Minimizing down hole mud losses, in: Paper No. IADC/ SPE 39398, IADC/SPE Drilling Conference, Dallas, TX, March 3–6, p. 7. [Google Scholar]
  • Zhang L., Wang Z., Du K., Xiao B., Chen W. (2020) A new analytical model of wellbore strengthening for fracture network loss of drilling fluid considering fracture roughness, J. Nat. Gas Sci. Eng. 77, https://doi.org/10.1016/j.jngse.2019.103093. [Google Scholar]
  • Vipulanandan C., Mohammed A. (2020) Effect of drilling mud bentonite contents on the fluid loss and filter cake formation on a field clay soil formation compared to the API fluid loss method and characterized using Vipulanandan models, J. Petrol. Sci. Eng. 189. https://doi.org/10.1016/j.petrol.2020.107029. [CrossRef] [Google Scholar]
  • Majidi R., Miska S.Z., Yu M., Thompson L.G. (2008a) Quantitative analysis of mud losses in naturally fractured reservoirs: the effect of rheology, in: SPE 114130 presented at the SPE Western Regional and Pacific Section AAPG Joint Meeting, Bakersfield, 31 March–2 April. [Google Scholar]
  • Majidi R., Miska S.Z., Yu M., Thompson L.G., Zhang J. (2008b) Modeling of drilling fluid losses in naturally fractured formations. Paper No. SPE 114630, in: SPE Annual Technical Conference and Exhibition, Denver, CO, September 21–24, p. 11. [Google Scholar]
  • Albattat R., Hoteit H. (2019) Modeling yield-power-law drilling fluid loss in fractured formation, J. Petrol. Sci. Eng. 182. [Google Scholar]
  • Xu C., Kang Y., Chen F., You Z. (2016) Fracture plugging optimization for drill-in fluid loss control and formation damage prevention in fractured tight reservoir, J. Nat. Gas Sci. Eng. 35. [Google Scholar]
  • Bjorndalen H.N., Jossy W.E., Alvarez J.M., Kuru E. (2014) A laboratory investigation of the factors controlling the filtration loss when drilling with Colloidal Gas Aphron (CGA) fluids. J. Pet. Sci. Eng. 117. [Google Scholar]
  • Dias F.T.G., Souza R.R., Lucas E.F. (2015) Influence of modified starches composition on their performance as fluid loss additives in invert-emulsion drilling fluids, Fuel 140. [Google Scholar]
  • Zukui L., Xinxu Z., Jingai Z., Daixu T., Yingsong Y., Jing Y., Yanqing L., Shengli Petroleum Administration Bureau, Dongying, Shandong, PR China (2001) The experiment investigation of the correlation of acoustic logging and rock mechanical and engineering characteristics, in: Chinese Society for Rock Mechanics and Engineering. Frontiers of Rock Mechanics and Sustainable Development in the 21st Century Proceedings of the 2001 ISRM International Symposium Asian Rock Mechanics Symposium (ISRM 2001-2nd ARMS). Chinese Society for Rock Mechanics and Engineering, pp. 105–107. [Google Scholar]
  • Chen P., Gupta P., Dudukovic M.P., Toseland B.A. (2006) Hydrodynamics of slurry bubble column during dimethyl ether (DME) synthesis: Gas–liquid recirculation model and radioactive tracer studies, Chem. Eng. Sci. 61, 19, 6553–6570. [Google Scholar]
  • LeCun Y., Bengio Y., Hinton G. (2015) Deep learning, Nature 521, 436–444. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Ghahramani Z. (2015) Probabilistic machine learning and artificial intelligence, Nature 521, 452–459. [CrossRef] [Google Scholar]
  • Littman M.L. (2015) Reinforcement learning improves behavior from evaluative feedback, Nature 521, 445–451. [PubMed] [Google Scholar]
  • Shelley B., Grieser B., Johnson B.J., Fielder E.O., Heinze J.R., Werline J.R. (2008) Data analysis of Barnett shale completions, SPE J. 13, 366–374. [Google Scholar]
  • Awoleke O.O., Lane R.H. (2011) Analysis of data from the Barnett shale using conventional statistical and virtual intelligence techniques, SPE Reserv. Eval. Eng. 14, 544–556. [Google Scholar]
  • Shaheen M., Shahbaz M., Rehman Z., Guergachi A. (2011) Data mining applications in hydrocarbon exploration, Artif. Intell. Rev. 35, 1–18. [Google Scholar]
  • Ma Z., Leung J.Y., Zanon S., Dzurman P. (2015) Practical implementation of knowledge-based approaches for steam-assisted gravity drainage production analysis, Expert Syst. Appl. 42, 7326–7343. [Google Scholar]
  • Wang S., Chen S. (2019) Insights to fracture stimulation design in unconventional reservoirs based on machine learning modeling, J. Petrol. Sci. Eng. 174, 682–695. [Google Scholar]
  • Moazzeni A., Nabaei M., Jegarluei S.G. (2012) Decision making for reduction of nonproductive time through an integrated lost circulation prediction, Petrol. Sci. Technol. 30, 20, 2097–2107. [Google Scholar]
  • Moazzeni A., Ali Haffar M. (2015) Artificial intelligence for lithology identification through real-time drilling data, Earth Sci. Clim. Change 6, 3, 265. [Google Scholar]
  • Ahmadi M.A., Shadizadeh S.R., Shah K., Bahadori A. (2018) An accurate model to predict drilling fluid density at wellbore conditions, Egyptian J. Petrol. 27, 1, 1–10. [Google Scholar]
  • Kato K., Sakawa M., Ishimaru K., Ushiro S., Shibano T. (2019) Heat load prediction through recurrent neural network in district heating and cooling systems, in: Proceedings of the 2008 IEEE International Conference on Systems, Man and Cybernetics (SMC), Singapore, 12–15 October 2008, IEEE, Piscataway, NJ, USA, pp. 1401–1406. ISBN 978-1-4244-2383-5. [Google Scholar]
  • Izadyar N., Ong H.C., Shamshirband S., Ghadamian H., Tong C.W. (2015) Intelligent forecasting of residential heating demand for the district heating system based on the monthly overall natural gas consumption, Energy Build. 104, 208–214. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.