Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 21
Number of page(s) 9
DOI https://doi.org/10.2516/ogst/2021002
Published online 11 March 2021
  • Lešnik L., Kegl B., Torres-Jiménez E., Cruz-Peragón F. (2020) Why we should invest further in the development of internal combustion engines for road applications, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 75, 56. [Google Scholar]
  • Maity S., James O.O., Chowdhury B., Auroux A. (2014) Effect of copper on calcium-modified alumina-supported cobalt catalysts towards Fischer–Tropsch synthesis, Curr. Sci. 106, 1538–1547. [Google Scholar]
  • Abbasi S., Abbasi M., Tabkhi F., Akhlaghi B. (2020) Syngas production plus reducing carbon dioxide emission using dry reforming of methane: utilizing low-cost Ni-based catalysts, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 75, 22. [Google Scholar]
  • Yu L., Liu X., Fang Y., Wang C., Sun Y. (2013) Highly active Co/SiC catalysts with controllable dispersion and reducibility for Fischer–Tropsch synthesis, Fuel 112, 483–488. [Google Scholar]
  • Yao M., Yao N., Shao Y., Han Q., Ma C., Yuan C., Li C., Li X. (2014) New insight into the activity of ZSM-5 supported Co and Co-Ru bifunctional Fischer–Tropsch synthesis catalyst, Chem. Eng. J. 239, 408–415. [Google Scholar]
  • Tursunov O., Kustov L., Kustov A. (2017) A brief review of carbon dioxide hydrogenation to methanol over copper and iron based catalysts, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 30. [CrossRef] [Google Scholar]
  • Jacobs G., Das T.K., Zhang Y., Li J., Racoillet G., Davis B.H. (2002) Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts, Appl. Catal. A: Gen. 233, 263–281. [Google Scholar]
  • Jacobs G., Ji Y., Davis B.H., Cronauer D., Kropf A.J., Marshall C.L. (2007) Fischer–Tropsch synthesis: Temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide, Appl. Catal. A: Gen. 333, 177–191. [Google Scholar]
  • Bessell B. (1993) Support effects in cobalt-based Fischer–Tropsch catalysis, Appl. Catal. A: Gen. 96, 253–268. [Google Scholar]
  • Spadaro L., Arena F., Granados M.L., Ojeda M., Fierro J.L.G., Frusteri F. (2005) Metal support interactions and reactivity of Co/CeO2 catalysts in the Fischer–Tropsch synthesis reaction, J. Catal. 34, 451–462. [Google Scholar]
  • Wang H., Willot F., Moreaud M., Rivallan M., Sorbier L., Jeulin D. (2017) Numerical simulation of hindered diffusion in γ-alumina catalyst supports, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 8. [Google Scholar]
  • Storsæter S., Tøtdal B., Walmsley J.C., Tanemn B.S., Holmen A. (2005) Characterization of alumina, silica, and titania-supported cobalt Fischer–Tropsch catalysts, J. Catal. 236, 139–152. [Google Scholar]
  • Schanke D., Vada S., Blekkan E.A., Hilmen A.M., Hoff A., Holmen A. (1995) Study of Pt-Promoted Cobalt CO Hydrogenation Catalysts, J. Catal. 156, 85–95. [Google Scholar]
  • Vada S., Hoff A., Adnanes E., Schanke D., Holmen A. (1995) Fischer–Tropsch synthesis on supported cobalt catalysts promoted by platinum and rhenium, Top. Catal. 2, 155–162. [Google Scholar]
  • Xu D., Li W., Duan H., Ge Q., Xu H. (2005) Reaction performance and characterization of Co/Al2O3 Fischer–Tropsch catalysts promoted with Pt, Pd and Ru, Catal. Lett. 102, 229–235. [CrossRef] [Google Scholar]
  • Lapidus A.L., Tsapkina M.V., Krylova A.Y. (2005) Bimetallic cobalt catalysts for the synthesis of hydrocarbons from CO and H2, Russ. Chem. Rev. 74, 577–586. [Google Scholar]
  • Guczi L., Borkó L., Schay Z., Bazin D., Mizukami F. (2001) CO hydrogenation and methane activation over Pd–Co/SiO2catalysts prepared by sol/gel method, Catal. Today 65, 51–57. [Google Scholar]
  • Liu Z., Li X., Asami K., Fujimoto K. (2005) Insights into a multifunctional hybrid catalyst composed of Co/SiO2 and Pd/Beta for isoparaffin production from syngas, Ind. Eng. Chem. Res. 44, 7329–7336. [Google Scholar]
  • Jin Y., Yang R., Mori Y., Sun J., Taguchi A., Yoneyama Y., Abe T., Tsubaki N. (2013) Preparation and performance of Co based capsule catalyst with the zeolite shell sputtered by Pd for direct isoparaffin synthesis from syngas, Appl. Catal. A. 456, 75–81. [Google Scholar]
  • Ribeiro M.C. (2009) Electroless cobalt alloys: magnetic and catalytic properties, PhD Thesis, Instituto de Quimica, Universidade de Sao Paulo. [Google Scholar]
  • Belousov V.M., Stoch J., Batcherikova I.V., Rozhkova E.V., Lyashenko L.V. (1989) Low-temperature hydrogen reduction of pure Co3O4 and doped with palladium, Appl. Surf. Sci. 35, 481–494. [Google Scholar]
  • Sarkany A., Zsoldos Z., Stefler G., Hightower J.W., Guczi L. (1995) Promoter Effect of Pd in Hydrogenation of 1, 3-Butadiene over Co–Pd Catalysts, J. Catal. 157, 179–189. [Google Scholar]
  • Guczi L., Schay Z., Stefler G., Mizukami F. (1999) Bimetallic catalysis: CO hydrogenation over palladium–cobalt catalysts prepared by sol/gel method, J. Mol. Catal. A Chem. 141, 177–185. [Google Scholar]
  • Murdoch Trant A.G., Gustafsona J., Jones T.E., Noakes T.C.Q., Bailey P., Baddeley C.J. (2016) The influence of CO adsorption on the surface composition of cobalt/palladium alloys, Surf. Sci. 646, 31–36. [Google Scholar]
  • Panpranot J., Tangjitwattakorn O., Praserthdam P., Goodwin J.G. Jr. (2005) Effects of Pd precursors on the catalytic activity and deactivation of silica-supported Pd catalysts in liquid phase hydrogenation, Appl. Catal. A Gen. 292, 322–327. [Google Scholar]
  • Karnjanakom S., Bayu A., Hao X., Kongparakul S., Samart C., Abudula A., Guan G. (2016) Selectively catalytic upgrading of bio-oil to aromatic hydrocarbons over Zn, Ce or Ni-doped mesoporous rod-like alumina catalysts, J. Mol. Catal. A: Chem. 421, 235–244. [Google Scholar]
  • Ding Y., Yin G., Xi Liao, Huang Z., Chen X., Yao Y., Li J. (2013) A convenient route to synthesize SBA-15 rods with tunable pore length for lysozyme adsorption, Microporous Mesoporous Mater. 170, 45–51. [Google Scholar]
  • Lu Y., Zhou P., Han J., Yu F. (2015) Fischer–Tropsch synthesis of liquid hydrocarbons over mesoporous SBA-15 supported cobalt catalyst, RSC Adv. 5, 59792–59803. [Google Scholar]
  • Vosoughi V., Badoga S., Dalai A.K., Abatzoglou N. (2017) Modification of mesoporous alumina as a support for cobalt-based catalyst in Fischer–Tropsch synthesis, Fuel Process. Technol. 162, 55–65. [Google Scholar]
  • Cejka J., Balcar H. (2003) Mesoporous molecular sieves as supports for metathesis catalysts, in: Metathesis Chemistry From Nanostructure Design to Synthesis of Advanced Materials, pp. 151–166. [Google Scholar]
  • Zhao D., Huo Q., Feng J., Chmelka B.F., Stucky G.D. (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structure, J. Am. Chem. Soc. 120, 6024–6036. [Google Scholar]
  • Margolese J.D., Melero S.A., Christiansen C., Chmelka B.F., Stucky G.D. (2000) Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups, Chem. Mater. 12, 2448–2459. [Google Scholar]
  • Osakoo N., Henkel R., Loiha S., Roessner F., Wittayakun J. (2014) Effect of support morphology and Pd promoter on Co/SBA–15 for Fischer-Tropsch Synthesis, Catal. Commun. 56, 168–173. [Google Scholar]
  • Montes de Correa C., Córdoba Castrillón F. (2005) Supported bimetallic Pd–Co catalysts: characterization and catalytic activity, J. Mol. Catal. A: Chem. 228, 267–273. [Google Scholar]
  • Hossain M.M. (2011) Co–Pd/ γ-Al2O3 Catalyst for heavy oil upgrading: desorption kinetics, reducibility and catalytic activity, Can. J. Chem. Eng. 9999, 1–10. [Google Scholar]
  • Khodakov A.Y., Chu W., Fongarland P. (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels, Chem. Rev. 107, 1692–1744. [CrossRef] [PubMed] [Google Scholar]
  • Tsubaki N., Sun S., Fujimoto K. (2001) Different functions of the noble metals added to cobalt catalysts for Fischer-Tropsch synthesis, J. Catal. 199, 236–246. [Google Scholar]
  • Yuanyuan S., Kongyong L., Jinlin L.I. (2009) Effect of silylation of SBA–15 on its supported cobalt catalysts for Fischer-Tropsch synthesis, Chin. J. Catal. 30, 1091–1095. [Google Scholar]
  • Arnoldy P., Moulijn J.A. (1985) Temperature-programmed reduction of CoOAI2O3 catalysts, J. Catal. 93, 38–54. [Google Scholar]
  • Martínez A., López C., Màrquez F., Díaz I. (2003) Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA–15 catalysts: the influence of metal loading, cobalt precursor, and promoters, J. Catal. 220, 486–499. [Google Scholar]
  • Xiong H., Zhang Y., Liew K., Li J. (2009) Ruthenium promotion of Co/SBA–15 catalysts with high cobalt loading for Fischer–Tropsch synthesis, Fuel Sci. Technol. 90, 237–246. [Google Scholar]
  • Kumar N., Smith M.L., Spivey J.J. (2012) Characterization and testing of silica-supported cobalt–palladium catalysts for conversion of syngas to oxygenates, J. Catal. 289, 218–226. [Google Scholar]
  • Jean-Marie A., Griboval-Constant A., Khodakov A.Y., Diehl F. (2009) Cobalt supported on alumina and silica-doped alumina: Catalyst structure and catalytic performance in Fischer-Tropsch synthesis, CR Chim. 12, 660–667. [Google Scholar]
  • Mu S., Li D., Hou B., Jia L., Chen J., Sun Y. (2010) Influence of ZrO2 loading on SBA-15-supported cobalt catalysts for Fischer–Tropsch synthesis, Ener. Fuels 24, 3715–3718. [Google Scholar]
  • Mandal S., Maity S., Gupta P.K., Mahato A., Bhanja P., Sahu G. (2018) Synthesis of middle distillate through low temperature Fischer–Tropsch (LTFT) reaction over mesoporous SDA supported cobalt catalysts using syngas equivalent to coal gasification, Appl. Catal. A Gen. 557, 55–63. [Google Scholar]
  • Ohtsuka Y., Arai T., Takasakz S., Tsubouchi N. (2003) Fischer–Tropsch synthesis with cobalt catalysts supported on mesoporous silica for efficient production of diesel fuel fraction, Ener. Fuels 17, 804–809. [Google Scholar]
  • Shi B., Davis B.H. (2004) Fischer–Tropsch synthesis: accounting for chain-length related phenomena, Appl. Catal. A Gen. 277, 61–69. [Google Scholar]
  • Albuquerque J.S., Costa F.O., Barbosa B.V.S. (2019) Fischer–Tropsch synthesis: analysis of products by Anderson–Schulz–Flory distribution using promoted cobalt catalyst, Catal. Lett. 149, 831–839. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.