- Akizuki Y., Yoshida M., Ishida N., Oshiki T., Oshitani J. (2014) PH Effect on properties of surfactant-free oil-in-water emulsion prepared with oleic acid. Chem. Lett. 43, 5, 604–606. [CrossRef] [Google Scholar]
- Alnoush W., Sayed A., Alyafei N. (2019) Optimization of contact angle and interfacial tension measurements for fluid/rock systems at ambient conditions, MethodsX 6, March, 1706–1715. [CrossRef] [Google Scholar]
- Alvarado D.A. (1979) Flow of oil-in-water emulsions through tubes and porous media (December), Society of Petroleum Engineers. [Google Scholar]
- Bryan J., Kantzas A. (2007) SPE 110738, Enhanced Heavy-Oil Recovery by Alkali-Surfactant Flooding”, Society of Petroleum Engineers. http://www.spe.org/elibrary/servlet/spepreview?id=SPE-110738-MS. [Google Scholar]
- Bryan J., Mai A., Kantzas A. (2008) Investigation into the processes responsible for heavy oil recovery by alkali-surfactant flooding, in: SPE – DOE Improved Oil Recovery Symposium Proceedings, pp. 1–13. https://doi.org/10.2118/113993-MS [Google Scholar]
- Chilingarian G.V., Yen T.F. (1994) Asphaltenes and asphalts, Elsevier, p. 1. [Google Scholar]
- Dong M., Qiang L., Aifen L. (2007) Micromodel study of the displacement mechanisms of enhanced heavy oil recovery, in: Presentation at the International Symposium of the Society of Core Analysts held in Calgary, Canada, 10–12 September, pp. 1–6. [Google Scholar]
- Dong W., David Suits L., Sheahan T.C., Selvadurai A.P.S. (2006) Image Processing Technique for Determining the Concentration of a Chemical in a Fluid-Saturated Porous Medium, Geotechnical Testing Journal 29, 5, 100024. [CrossRef] [Google Scholar]
- Doryani H., Seyede E.B., Masoud R., Mohammad R.M. (2017) Experimental investigation of alkali flooding on enhanced recovery of an asphaltenic oil, Pet. Res. 27, 107–121. [Google Scholar]
- Farias M., Carvalho M., Souza A., Hirasaki G., Miller C. (2012) A comparative study of emulsion flooding and other IOR methods for heavy oil fields, Society of Petroleum Engineers. https://doi.org/10.2118/152290-MS. [Google Scholar]
- Feng H., Kang W., Zhang L., Chen J., Li Z., Zhou Q., Wua H. (2018) Experimental study on a fine emulsion flooding system to enhance oil recovery for low permeability reservoirs, J. Pet. Sci. Eng. 171, 974–981. https://doi.org/10.1016/j.petrol.2018.08.011. [CrossRef] [Google Scholar]
- Goodarzi F., Zendehboudi S. (2019) A comprehensive review on emulsions and emulsion stability in chemical and energy industries, Canadian J. Chem. Eng. 97, 1, 281–309. [CrossRef] [Google Scholar]
- Holditch S.A. (2007) IV: Operations petroleum engineering production operations engineering, Society of Petroleum Engineers. [Google Scholar]
- Hubbard R.M., Brown G.G. (1943) The rolling ball viscometer, Indus. Eng. Chem. – Anal. Edn. 15, 3, 212–218. [CrossRef] [Google Scholar]
- Ismail I., Kazemzadeh Y., Sharifi M., Riazi M., Malayeri M.R., Cortés F. (2019) Formation and stability of W/O emulsions in presence of asphaltene at reservoir thermodynamic conditions, J. Mol. Liq. 299, 112125. https://doi.org/10.1016/j.molliq.2019.112125. [CrossRef] [Google Scholar]
- Karambeigi M.S., Abbassi R., Roayaei E., Emadi M.A. (2015) Emulsion flooding for enhanced oil recovery: interactive optimization of phase behavior, microvisual and core-flood experiments, J. Indus. Eng. Chem. 29, 382–391. https://doi.org/10.1016/j.jiec.2015.04.019. [Google Scholar]
- Kazemzadeh Y., Ismail I., Rezvani H., Sharifi M., Riazi M. (2019) Experimental investigation of stability of water in oil emulsions at reservoir conditions: effect of ion type, ion concentration, and system pressure, Fuel 243, 15–27. [CrossRef] [Google Scholar]
- Kumar R., Dao E.K., Mohanty K.K. (2010) Emulsion flooding of heavy oil, in: SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. [Google Scholar]
- Liu Q., Dong M., Yue X., Hou J. (2006) Synergy of alkali and surfactant in emulsification of heavy oil in brine, Colloids Surf. A: Physicochem. Eng. Aspects 273, 1–3, 219–228. [CrossRef] [Google Scholar]
- Mahdavi E., Zebarjad F.S. (2018) Fundamentals of enhanced oil and gas recovery from conventional and unconventional reservoirs, in: Screening Criteria of Enhanced Oil Recovery Methods, Elsevier Inc. https://doi.org/10.1016/B978-0-12-813027-8.00002-3. [Google Scholar]
- Mai A., Kantzas A. (2009) Heavy oil waterflooding: effects of flow rate and oil viscosity, J. Canadian Pet. Technol. 48, 3, 42–51. [CrossRef] [Google Scholar]
- Mathworks (2015) Mathworks MATLAB Manual 2015, R2015b. [Google Scholar]
- Mehranfar A., Ghazanfari M.H. (2014) Investigation of the microscopic displacement mechanisms and macroscopic behavior of alkaline flooding at different wettability conditions in shaly glass micromodels, J. Pet. Sci. Eng. 122, 595–615. https://doi.org/10.1016/j.petrol.2014.08.027. [CrossRef] [Google Scholar]
- Palizdan S., Abbasi J., Riazi M., Malayeri M.R. (2020) Impact of solutal Marangoni convection on oil recovery during chemical flooding, Pet. Sci. 17, 1298–1317. https://doi.org/10.1007/s12182-020-00451-z. [CrossRef] [Google Scholar]
- Pei H., Zhang G., Ge J., Ma M., Zhang L., Liu Y.L. (2013a) Improvement of sweep efficiency by alkaline flooding for heavy oil reservoirs, J. Disp. Sci. Technol. 34, 11, 1548–1556. https://doi.org/10.1080/01932691.2012.752331. [CrossRef] [Google Scholar]
- Pei H., Zhang G., Ge J., Jin L., Ma C. (2013b) Potential of alkaline flooding to enhance heavy oil recovery through water-in-oil emulsification, Fuel 104, 284–293. https://doi.org/10.1016/j.fuel.2012.08.024. [CrossRef] [Google Scholar]
- Poteau S., Argillier J.F., Langevin D., Pincet F. (2005) Influence of PH on stability and dynamic properties of asphaltenes and other amphiphilic molecules at the oil-water interface, Energy Fuels 19, 4, 1337–1341. [CrossRef] [Google Scholar]
- Pu W., Shen C., Tang X., Pang S., Sun D., Mei Z. (2019) Emulsification of acidic heavy oil for viscosity reduction and enhanced oil recovery, J. Disp. Sci. Technol. 41, 54–61. https://doi.org/10.1080/01932691.2018.1544908. [CrossRef] [Google Scholar]
- Rezaei N., Firoozabadi A. (2014) Macro- and microscale waterflooding performances of crudes which form w/o emulsions upon mixing with brines, Energy Fuels 28, 3, 2092–2103. [CrossRef] [Google Scholar]
- Roman S., Soulaine C., AlSaud M.A., Kovscek A., Tchelepi H. (2016) Particle velocimetry analysis of immiscible two-phase flow in micromodels, Adv. Water Res. 95, 199–211. [CrossRef] [Google Scholar]
- Rudin J., Bernard C., Wasan D.T. (1994), Effect of added surfactant on interfacial tension and spontaneous emulsification in alkali/acidic oil systems, Indus. Eng. Chem. Res. 33, 1150–1158. [CrossRef] [Google Scholar]
- Sabooniha E., Rokhforouz M.R., Ayatollahi S. (2019) Pore-scale investigation of selective plugging mechanism in immiscible two-phase flow using phase-field method, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 78. https://doi.org/10.2516/ogst/2019050. [CrossRef] [Google Scholar]
- Saha R., Uppaluri R., Tiwari P. (2018) Influence of emulsification, interfacial tension, wettability alteration and saponification on residual oil recovery by alkali flooding, J. Indus. Eng. Chem. 59, October, 286–296. https://doi.org/10.1016/j.jiec.2017.10.034. [CrossRef] [Google Scholar]
- Schmidt D.P., Soo H., Radke C.J. (1984) Linear oil displacement by the emulsion entrapment process, Society of Petroleum Engineers, pp. 351–360. [Google Scholar]
- Shahsavani B., Malayeri M.R., Riazi M. (2019) Impact of aqueous phase in emulsified form on distribution and instability of asphaltene molecules, J. Mol. Liq. 295, 111688. https://doi.org/10.1016/j.molliq.2019.111688. [CrossRef] [Google Scholar]
- Shang X., Bai Y., Sun J., Dong C. (2019) Performance and displacement mechanism of a surfactant/compound alkaline flooding system for enhanced oil recovery, Colloids Surf. A: Physicochem. Eng. Aspects 580, July, 123679. https://doi.org/10.1016/j.colsurfa.2019.123679. [CrossRef] [Google Scholar]
- Sheng J. (2010) Modern chemical enhanced oil recovery: theory and practice, Gulf Professional Publishing. [Google Scholar]
- Sheng J.J. (2015) Status of alkalinesurfactant flooding, Polym. Sci. 1, 1. [Google Scholar]
- Sjöblom J. (Hrsg.) (2001) Encyclopedic Handbook of Emulsion Technology, http://login.ezproxy.library.ualberta.ca/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edscea&AN=EDSCEA.CEAB20021100230&site=eds-live&scope=site. [Google Scholar]
- Soo H., Radke C.J. (1984) Velocity effects in emulsion flow through porous media, J. Colloid Interface Sci. 102, 2, 462–476. [CrossRef] [Google Scholar]
- Soot H., Radke C.J. (1984) Flow mechanism of dilute, stable emulsions in porous media, Indus. Eng. Chem. Fundam. 23, 342–347. [CrossRef] [Google Scholar]
- Sun J.H., Zhang F.S., Wu Y.W., Liu G.L., Li X.N., Su H.M., Zhu Z.Y. (2019) Overview of emulsified viscosity reducer for enhancing heavy oil recovery, IOP Conf. Ser. Mater. Sci. Eng. 479, 012009. [CrossRef] [Google Scholar]
- Taiwo O.A., Mamudu A., Dagogo-Jack C., Joshua D., Olafuyi O. (2016) Grain Size Effects on Residual Oil Saturation, Society of Petroleum Engineers. https://doi.org/10.2118/184296-MS. [Google Scholar]
- Thomas S. (2008) Enhanced oil recovery – an overview, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 63, 1, 9–19. [CrossRef] [Google Scholar]
- Umar A.A., Saaid I.B.M., Sulaimon A.A., Pilus R.B.M. (2018) A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids, J. Pet. Sci. Eng. 165, 673–690. https://doi.org/10.1016/j.petrol.2018.03.014. [CrossRef] [Google Scholar]
- Wang J., Dong M. (2009) Simulation of O/W emulsion flow in alkaline/surfactant flood for heavy oil recovery, Petroleum Society of Canada, pp. 1–13. [Google Scholar]
- Wang J., Dong M., Arhuoma M. (2010) Experimental and numerical study of improving heavy oil recovery by alkaline flooding in sandpacks, J/ Canadian Pet. Technol. 49, 3, 51–57. [CrossRef] [Google Scholar]
- Youssef S., Rosenberg E., Deschamps H., Oughanem R., Maire E., Mokso R. (2014) Oil ganglia dynamics in natural porous media during surfactant flooding captured by ultra-fast X-ray microtomography, in: International Symposium of the Society of Core Analysts (SCA2014-023), pp. 1–12. [Google Scholar]
- Zuo L., Zhang C., Falta R.W., Benson S.M. (2013) Micromodel investigations of CO2 exsolution from carbonated water in sedimentary rocks, Adv. Water Resour. 53, 188–197. [CrossRef] [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
|
|
---|---|---|
Article Number | 87 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.2516/ogst/2020072 | |
Published online | 02 December 2020 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.