Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Article Number 50
Number of page(s) 16
DOI https://doi.org/10.2516/ogst/2020045
Published online 21 July 2020
  • Craig F.F. (1971) The reservoir engineering aspects of waterflooding, Henry L. Doherty Memorial Fund of AIME, New York. [Google Scholar]
  • Brouwer D.R., Jansen J.D. (2002) Dynamic optimization of water flooding with smart wells using optimal control theory, in: European Petroleum Conference, Society of Petroleum Engineers. [Google Scholar]
  • Holmgren C.R., Morse R.A. (1951) Effect of free gas saturation on oil recovery by water flooding, J. Pet. Technol. 3, 135–140. [CrossRef] [Google Scholar]
  • Cooke C.E. Jr., Williams R.E., Kolodzie P.A. (1974) Oil recovery by alkaline waterflooding, J. Pet. Technol. 26, 1–365. [Google Scholar]
  • Dunlap P.M., Brandner C.F., Townsend H.L. (1969) U.S. Patent No. 3467190, U.S. Patent and Trademark Office, Washington, DC. [Google Scholar]
  • Martin J.C. (1959) The effects of clay on the displacement of heavy oil by water, in: Venezuelan Annual Meeting, Society of Petroleum Engineers. [Google Scholar]
  • Burdyn R.F., Chang H.L., Cook E.L. (1977) U.S. Patent No. 4004638, U.S. Patent and Trademark Office, Washington, DC. [Google Scholar]
  • Hurd B.G. (1983) U.S. Patent No. 4421168, U.S. Patent and Trademark Office, Washington, DC. [Google Scholar]
  • Hurd B.G. (1984) U.S. Patent No. 4463806, U.S. Patent and Trademark Office, Washington, DC. [Google Scholar]
  • Jadhunandan P.P., Morrow N.R. (1991) Spontaneous imbibition of water by crude oil/brine/rock systems, In Situ (United States) 15, 4. [Google Scholar]
  • Jadhunandan P.P., Morrow N.R. (1995) Effect of wettability on waterflood recovery for crude-oil/brine/rock systems, SPE Reserv. Eng. 10, 40–46. [CrossRef] [Google Scholar]
  • Yildiz H.O., Morrow N.R. (1996) Effect of brine composition on recovery of Moutray crude oil by waterflooding, J. Pet. Sci. Eng. 14, 159–168. [Google Scholar]
  • Tang G.Q., Morrow N.R. (1999) Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery, J. Pet. Sci. Eng. 24, 99–111. [Google Scholar]
  • Austad T., RezaeiDoust A., Puntervold T. (2010) Chemical mechanism of low salinity water flooding in sandstone reservoirs, in: SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. [Google Scholar]
  • Robbana E., Buikema T.A., Mair C., Williams D., Mercer D.J., Webb K.J., Hewson A., Reddick C.E. (2012) Low salinity enhanced oil recovery-laboratory to day one field implementation-LoSal EOR into the Clair Ridge Project, in: Abu Dhabi International Petroleum Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Lager A., Webb K.J., Collins I.R., Richmond D.M. (2008) LoSal enhanced oil recovery: Evidence of enhanced oil recovery at the reservoir scale, in: SPE Symposium on Improved Oil Recovery, Society of Petroleum Engineers. [Google Scholar]
  • Zekri A.Y., Nasr M.S., Al-Arabai Z.I. (2011) Effect of LoSal on wettability and oil recovery of carbonate and sandstone formation, in: International Petroleum Technology Conference, International Petroleum Technology Conference. [Google Scholar]
  • Salamy S.P., Al-Mubarak H.K., Hembling D.E., Al-Ghamdi M.S. (2006) Deployed Smart technologies enablers for improving well performance in tight reservoirs-case: Shaybah Field, Saudi Arabia, in: Intelligent Energy Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Yousef A.A., Liu J.S., Blanchard G.W., Al-Saleh S., Al-Zahrani T., Al-Zahrani R.M., Al-Tammar H.I., Al-Mulhim N. (2012) Smart waterflooding: Industry, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Yousef A.A., Al-Salehsalah S.H., Al-Jawfi M.S. (2011) New recovery method for carbonate reservoirs through tuning the injection water salinity: Smart waterflooding, in: SPE EUROPEC/EAGE Annual Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Vledder P., Gonzalez I.E., Carrera Fonseca J.C., Wells T., Ligthelm D.J. (2010) Low salinity water flooding: Proof of wettability alteration on a field wide scale, in: SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. [Google Scholar]
  • Zahid A., Shapiro A.A., Skauge A. (2012) Experimental studies of low salinity water flooding carbonate: A new promising approach, in: SPE EOR Conference at Oil and Gas West Asia, Society of Petroleum Engineers. [Google Scholar]
  • Seccombe J., Lager A., Jerauld G., Jhaveri B., Buikema T., Bassler S., Denis J., Webb K., Cockin A., Fueg E. (2010) Demonstration of low-salinity EOR at interwell scale, Endicott field, Alaska, in: SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. [Google Scholar]
  • Ayirala S.C., Uehara-Nagamine E., Matzakos A.N., Chin R.W., Doe P.H., van den Hoek P.J. (2010) A designer water process for offshore low salinity and polymer flooding applications, in: SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. [Google Scholar]
  • Ashraf A., Hadia N., Torsaeter O., Tweheyo M.T. (2010) Laboratory investigation of low salinity waterflooding as secondary recovery process: Effect of wettability, in: SPE Oil and Gas India Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Mahani H., Sorop T., Ligthelm D.J., Brooks D., Vledder P., Mozahem F., Ali Y. (2011) Analysis of field responses to low-salinity waterflooding in secondary and tertiary mode in Syria, in: SPE Europec/EAGE Annual Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Xie Q., Brady P.V., Pooryousefy E., Zhou D., Liu Y., Saeedi A. (2017) The low salinity effect at high temperatures, Fuel 200, 419–426. [CrossRef] [Google Scholar]
  • Sheng J.J. (2014) Critical review of low-salinity waterflooding, J. Pet. Sci. Eng. 120, 216–224. [Google Scholar]
  • Al-Shalabi E.W., Sepehrnoori K. (2016) A comprehensive review of low salinity/engineered water injections and their applications in sandstone and carbonate rocks, J. Pet. Sci. Eng. 139, 137–161. [Google Scholar]
  • Zhang P. (2006) Water-based EOR in fractured chalk – wettability and chemical additives, PhD Thesis, University of Stavanger, Norway, 125 p. [Google Scholar]
  • Hoegnesen E.J. (2005) EOR in fractured oil-wet chalk. Spontaneous imbibition of water by wettability alteration, PhD Thesis, University of Stavanger, Norway, 142 p. [Google Scholar]
  • Strand S., Puntervold T., Austad T. (2008) Effect of temperature on enhanced oil recovery from mixed-wet chalk cores by spontaneous imbibition and forced displacement using seawater, Energy Fuels 22, 3222–3225. [Google Scholar]
  • Webb K.J., Black C.J.J., Tjetland G. (2005) A laboratory study investigating methods for improving oil recovery in carbonates, in: International Petroleum Technology Conference, International Petroleum Technology Conference. [Google Scholar]
  • Liu X., Li J., Zhu Q., Feng J., Li Y., Sun J. (2009) The analysis and prediction of scale accumulation for water-injection pipelines in the Daqing Oilfield, J. Pet. Sci. Eng. 66, 161–164. [Google Scholar]
  • Yousef A.A., Al-Saleh S.H., Al-Kaabi A., Al-Jawfi M.S. (2011) Laboratory investigation of the impact of injection-water salinity and ionic content on oil recovery from carbonate reservoirs, SPE Reserv. Evalu. Eng. 14, 578–593. [CrossRef] [Google Scholar]
  • Charles C.P. (1986) Applied water technology, Campbell Petroleum Series. [Google Scholar]
  • Bernard G.G. (1967) Effect of floodwater salinity on recovery of oil from cores containing clays, in: SPE California Regional Meeting, Society of Petroleum Engineers. [Google Scholar]
  • Alotaibi M.B., Nasr-El-Din H.A. (2009) Chemistry of injection water and its impact on oil recovery in carbonate and clastics formations, in: SPE International Symposium on Oilfield Chemistry, Society of Petroleum Engineers. [Google Scholar]
  • Merdhah A., Yassin A. (2009) Scale formation due to water injection in Berea sandstone cores, J. Appl. Sci. 9, 3298–3307. [CrossRef] [Google Scholar]
  • Zeinijahromi A., Ahmetgareev V., Bedrikovetsky P. (2015) Case study of 25 years of low salinity water injection, in: SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Baptist O.C., Sweeney S.A. (1955) Effect of clays on the permeability of reservoir sands to various saline waters, US Department of the Interior, Bureau of Mines, Wyoming. [Google Scholar]
  • Akhmetgareev V., Khisamov R. (2015) 40 years of low-salinity waterflooding in Pervomaiskoye Field, Russia: Incremental oil, in: SPE European Formation Damage Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Afekare D.A., Radonjic M. (2017) From mineral surfaces and coreflood experiments to reservoir implementations: Comprehensive review of low-salinity water flooding (LSWF), Energy Fuels 31, 13043–13062. [Google Scholar]
  • Pu H., Xie X., Yin P., Morrow N.R. (2010) Low-salinity waterflooding and mineral dissolution, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Zhang Y., Xie X., Morrow N.R. (2007) Waterflood performance by injection of brine with different salinity for reservoir cores, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Soraya B., Malick C., Philippe C., Bertin H.J., Hamon G. (2009) Oil recovery by low-salinity brine injection: laboratory results on outcrop and reservoir cores, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Morrow N.R. (1990) Wettability and its effect on oil recovery, J. Pet. Technol. 42, 1–476. [Google Scholar]
  • Brady P.V., Morrow N.R., Fogden A., Deniz V., Loahardjo N. (2015) Electrostatics and the low salinity effect in sandstone reservoirs, Energy Fuels 29, 666–677. [Google Scholar]
  • Morrow N., Buckley J. (2011) Improved oil recovery by low-salinity waterflooding, J. Pet. Technol. 63, 106–112. [CrossRef] [Google Scholar]
  • Anderson W. (1986) Wettability literature survey-part 2: Wettability measurement, J. Pet. Technol. 38, 1–246. [Google Scholar]
  • Kafili Kasmaei A., Rao D.N. (2015) Is wettability alteration the main cause for enhanced recovery in low-salinity waterflooding? SPE Reserv. Evalu. Eng. 18, 228–235. [CrossRef] [Google Scholar]
  • Alameri W., Teklu T.W., Graves R.M., Kazemi H., AlSumaiti A.M. (2015) Experimental and numerical modeling of low-salinity waterflood in a low permeability carbonate reservoir, in: SPE Western Regional Meeting, Society of Petroleum Engineers. [Google Scholar]
  • McGuire P.L., Chatham J.R., Paskvan F.K., Sommer D.M., Carini F.H. (2005) Low salinity oil recovery: An exciting new EOR opportunity for Alaska’s North Slope, in: SPE Western Regional Meeting, Society of Petroleum Engineers. [Google Scholar]
  • Morrow N.R., Tang G.Q., Valat M., Xie X. (1998) Prospects of improved oil recovery related to wettability and brine composition, J. Pet. Sci. Eng. 20, 267–276. [Google Scholar]
  • RezaeiDoust A., Puntervold T., Strand S., Austad T. (2009) Smart water as wettability modifier in carbonate and sandstone: A discussion of similarities/differences in the chemical mechanisms, Energy Fuels 23, 4479–4485. [Google Scholar]
  • Drummond C., Israelachvili J. (2002) Surface forces and wettability, J. Pet. Sci. Eng. 33, 123–133. [Google Scholar]
  • Takamura K., Chow R.S. (1983) A mechanism for initiation of bitumen displacement from oil sand, J. Can. Pet. Technol. 22, 22–30. [CrossRef] [Google Scholar]
  • Ding H., Rahman S. (2017) Experimental and theoretical study of wettability alteration during low salinity water flooding-an state of the art review, Colloids Surf. A Physicochem. Eng. Asp. 520, 622–639. [Google Scholar]
  • Derjaguin B.V., Churaev N.V. (1974) Structural component of disjoining pressure, J. Colloid Interface Sci. 49, 249–255. [Google Scholar]
  • Israelachvili J.N., Tabor D. (1972) The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm, Proc. R. Soc. London A. Math. Phys. Sci. 331, 19–38. [Google Scholar]
  • Ligthelm D.J., Gronsveld J., Hofman J., Brussee N., Marcelis F., van der Linde H. (2009) Novel waterflooding strategy by manipulation of injection brine composition, in: EUROPEC/EAGE Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Nasralla R.A., Nasr-El-Din H.A. (2014) Double-layer expansion: is it a primary mechanism of improved oil recovery by low-salinity waterflooding? SPE Reserv. Evalu. Eng. 17, 49–59. [CrossRef] [Google Scholar]
  • Choudhary N., Nair A.K.N., Ruslan M.F.A.C., Sun S. (2019) Bulk and interfacial properties of decane in the presence of carbon dioxide, methane, and their mixture, Sci. Rep. 9, 19784. [CrossRef] [PubMed] [Google Scholar]
  • Israelachvili J.N. (2011) Intermolecular and surface forces, Academic Press, Cambridge. [Google Scholar]
  • Pashley R.M. (1981) DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties, J. Colloid Interface Sci. 83, 531–546. [Google Scholar]
  • Chapel J.P. (1994) Electrolyte species dependent hydration forces between silica surfaces, Langmuir 10, 4237–4243. [Google Scholar]
  • Nourani M., Tichelkamp T., Gaweł B., Øye G. (2014) Method for determining the amount of crude oil desorbed from silica and aluminosilica surfaces upon exposure to combined low-salinity water and surfactant solutions, Energy Fuels 28, 1884–1889. [Google Scholar]
  • Horn R.G. (1990) Surface forces and their action in ceramic materials, J. Am. Ceram. Soc. 73, 1117–1135. [Google Scholar]
  • Fang C., Yang Y., Sun S., Qiao R. (2020) Low salinity effect on the recovery of oil trapped by nanopores: A molecular dynamics study, Fuel 261, 116443, 1. [CrossRef] [Google Scholar]
  • Fang C., Sun S., Qiao R. (2019) Structure, thermodynamics, and dynamics of thin brine films in oil-brine-rock systems, Langmuir 35, 10341–10353. [CrossRef] [PubMed] [Google Scholar]
  • Lager A., Webb K.J., Black C.J.J., Singleton M., Sorbie K.S. (2008) Low salinity oil recovery-an experimental investigation1, Petrophysics 49, 1–8. [Google Scholar]
  • Seccombe J.C., Lager A., Webb K.J., Jerauld G., Fueg E. (2008) Improving wateflood recovery: LoSalTM EOR field evaluation, in: SPE symposium on improved oil recovery, Society of Petroleum Engineers. [Google Scholar]
  • Sheng J.J. (2010) Modern chemical enhanced oil recovery: Theory and practice, Gulf Professional Publishing, Houston. [Google Scholar]
  • Valdya R.N., Fogler H.S. (1992) Fines migration and formation damage: influence of pH and ion exchange, SPE Prod. Eng. 7, 325–330. [CrossRef] [Google Scholar]
  • Sari A., Xie Q., Chen Y., Saeedi A., Pooryousefy E. (2017) Drivers of low salinity effect in carbonate reservoirs, Energy Fuels 31, 8951–8958. [Google Scholar]
  • Brady P.V., Krumhansl J.L., Mariner P.E. (2012) Surface complexation modeling for improved oil recovery, in: SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. [Google Scholar]
  • Brady P.V., Thyne G. (2016) Functional wettability in carbonate reservoirs, Energy Fuels 30, 9217–9225. [Google Scholar]
  • Xie Q., Sari A., Pu W., Chen Y., Brady P.V., Al Maskari N., Saeedi A. (2018) pH effect on wettability of oil/brine/carbonate system: Implications for low salinity water flooding, J. Pet. Sci. Eng. 168, 419–425. [Google Scholar]
  • Brady P.V., Krumhansl J.L. (2012) A surface complexation model of oil-brine-sandstone interfaces at 100 °C: Low salinity waterflooding, J. Pet. Sci. Eng. 81, 171–176. [Google Scholar]
  • Chen Y., Xie Q., Sari A., Brady P.V., Saeedi A. (2018) Oil/water/rock wettability: Influencing factors and implications for low salinity water flooding in carbonate reservoirs, Fuel 215, 171–177. [CrossRef] [Google Scholar]
  • Basu S., Sharma M.M. (1997) Investigating the role of crude-oil components on wettability alteration using atomic force microscopy, in: International Symposium on Oilfield Chemistry, Society of Petroleum Engineers. [Google Scholar]
  • Hunter R.J. (2013) Zeta potential in colloid science: Principles and applications, Academic Press, Cambridge. [Google Scholar]
  • Mahani H., Keya A.L., Berg S., Nasralla R. (2017) Electrokinetics of carbonate/brine interface in low-salinity waterflooding: Effect of brine salinity, composition, rock type, and pH on ζ-potential and a surface-complexation model, SPE J. 22, 53–68. [CrossRef] [Google Scholar]
  • Kosmulski M. (2000) Electrical interfacial layer in nonaqueous solvents, Interfacial dynamics, CRC Press, Boca Raton, pp. 289–328. [Google Scholar]
  • Hiorth A., Cathles L.M., Madland M.V. (2010) The impact of pore water chemistry on carbonate surface charge and oil wettability, Transp. Porous Media 85, 1–21. [Google Scholar]
  • Marouf R., Marouf-Khelifa K., Schott J., Khelifa A. (2009) Zeta potential study of thermally treated dolomite samples in electrolyte solutions, Micropor. Mesopor. Mater. 122, 99–104. [CrossRef] [Google Scholar]
  • Omekeh A.V., Friis H.A., Fjelde I., Evje S. (2012) Modeling of ion-exchange and solubility in low salinity water flooding, in: SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. [Google Scholar]
  • Dang C.T., Nghiem L.X., Chen Z., Nguyen Q.P., Nguyen N.T. (2013) State-of-the art low salinity waterflooding for enhanced oil recovery, in: SPE Asia Pacific Oil and Gas Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Aghaeifar Z., Strand S., Austad T., Puntervold T., Aksulu H., Navratil K., Storås S., Håmsø D. (2015) Influence of formation water salinity/composition on the low-salinity enhanced oil recovery effect in high-temperature sandstone reservoirs, Energy Fuels 29, 4747–4754. [Google Scholar]
  • Alotaibi M.B., Azmy R., Nasr-El-Din H.A. (2010) Wettability challenges in carbonate reservoirs, in: SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. [Google Scholar]
  • Al-Saedi H.N., Flori R.E., Brady P.V. (2019) Effect of divalent cations in formation water on wettability alteration during low salinity water flooding in sandstone reservoirs: Oil recovery analyses, surface reactivity tests, contact angle, and spontaneous imbibition experiments, J. Mol. Liq. 275, 163–172. [Google Scholar]
  • Nasralla R.A., Bataweel M.A., Nasr-El-Din H.A. (2011) Investigation of wettability alteration by low salinity water, in: Offshore Europe, Society of Petroleum Engineers. [Google Scholar]
  • Alagic E., Spildo K., Skauge A., Solbakken J. (2011) Effect of crude oil ageing on low salinity and low salinity surfactant flooding, J. Pet. Sci. Eng. 78, 220–227. [Google Scholar]
  • Wang Y. (2019) Reynolds stress model for viscoelastic drag-reducing flow induced by polymer solution, Polymers 11, 1659. [Google Scholar]
  • Wang Y., Sun S., Gong L., Yu B. (2018) A globally mass-conservative method for dual-continuum gas reservoir simulation, J. Nat. Gas Sci. Eng. 53, 301–316. [Google Scholar]
  • Wang Y., Sun S., Yu B. (2017) Acceleration of gas flow simulations in dual-continuum porous media based on the mass-conservation POD method, Energies 10, 1380. [Google Scholar]
  • Gong L., Xu Y.P., Ding B., Zhang Z.H., Huang Z.Q. (2020) Thermal management and structural parameters optimization of MCM-BGA 3D package model, Int. J. Therm. Sci. 147, 106120. [Google Scholar]
  • Li J., Zhang T., Sun S., Yu B. (2019) Numerical investigation of the POD reduced-order model for fast predictions of two-phase flows in porous media, Int. J. Numer. Method. Heat Fluid Flow 29, 4167–4204. [CrossRef] [Google Scholar]
  • Zhang Tao, Sun Shuyu (2019) A coupled Lattice Boltzmann approach to simulate gas flow and transport in shale reservoirs with dynamic sorption, Fuel 246, 196–203. [CrossRef] [Google Scholar]
  • Sun S. (2019) Darcy-scale phase equilibrium modeling with gravity and capillarity, J. Comput. Phys. 399, 108908, 22. [Google Scholar]
  • Kou J., Sun S., Wang X. (2020) A novel energy factorization approach for the diffuse-interface model with Peng-Robinson equation of state, SIAM J. Sci. Comput. 42, 1, B30–B56. [Google Scholar]
  • Zhu G., Kou J., Yao B., Wu Y.-S., Yao J., Sun S. (2019) Thermodynamically consistent modelling of two-phase flows with moving contact line and soluble surfactants, J. Fluid Mech. 879, 327–359. [Google Scholar]
  • Kou J., Sun S., Wang X. (2018) Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow, SIAM J. Numer. Anal. 56, 6, 3219–3248. [Google Scholar]
  • Yang H., Sun S., Li Y., Yang C. (2019) A fully implicit constraint-preserving simulator for the black oil model of petroleum reservoirs, J. Comput. Phys. 396, 347–363. [Google Scholar]
  • Chen H., Kou J., Sun S., Zhang T. (2019) Fully mass-conservative IMPES schemes for incompressible two-phase flow in porous media, Comput. Methods Appl. Mech. Eng. 350, 641–663. [Google Scholar]
  • Zhang T., Sun S., Yu B. (2017) A fast algorithm to simulate droplet motions in oil/water two phase flow, Procedia Comput. Sci. 108, 1953–1962. [Google Scholar]
  • Zhang T., Salama A., Sun S., Zhong H. (2015) A compact numerical implementation for solving Stokes equations using matrix-vector operations, Procedia Comput. Sci. 51, 1208–1218. [Google Scholar]
  • Li Y., Zhang T., Sun S., Gao X. (2019) Accelerating flash calculation through deep learning methods, J. Comput. Phys. 394, 153–165. [Google Scholar]
  • Alhuraishawy A.K., Bai B., Wei M., Geng J., Pu J. (2018) Mineral dissolution and fine migration effect on oil recovery factor by low-salinity water flooding in low-permeability sandstone reservoir, Fuel 220, 898–907. [CrossRef] [Google Scholar]
  • Xie Q., Liu F., Chen Y., Yang H., Saeedi A., Hossain M.M. (2019) Effect of electrical double layer and ion exchange on low salinity EOR in a pH controlled system, J. Pet. Sci. Eng. 174, 418–424. [Google Scholar]
  • Pouryousefy E., Xie Q., Saeedi A. (2016) Effect of multi-component ions exchange on low salinity EOR: Coupled geochemical simulation study, Petroleum 2, 215–224. [CrossRef] [Google Scholar]
  • Aldousary S., Kovscek A.R. (2019) The diffusion of water through oil contributes to spontaneous emulsification during low salinity waterflooding, J. Pet. Sci. Eng. 179, 606–614. [Google Scholar]
  • Lashkarbolooki M., Riazi M., Hajibagheri F., Ayatollahi S. (2016) Low salinity injection into asphaltenic-carbonate oil reservoir, mechanistical study, J. Mol. Liq. 216, 377–386. [Google Scholar]
  • Adekunle O., Tutuncu A.N. (2019) Comparative laboratory scale reservoir study on geomechanical property alterations arising from osmosis pressure distribution within Clay Rich Shales, in: Unconventional Resources Technology Conference, Society of Petroleum Engineers. [Google Scholar]
  • Torrijos I.D.P., Puntervold T., Strand S., Austad T., Tran V.V., Olsen K. (2017) Impact of temperature on the low salinity EOR effect for sandstone cores containing reactive plagioclase, J. Pet. Sci. Eng. 156, 102–109. [Google Scholar]
  • Buckley J.S., Morrow N.R. (2010) Improved oil recovery by low salinity waterflooding: A mechanistic review, in: 11th International Symposium on Evaluation of Wettability and its Effect on Oil Recovery. [Google Scholar]
  • Sorop T.G., Suijkerbuijk B.M.J.M., Masalmeh S.K., Looijer M.T., Parker A.R., Dindoruk D., Goodyear S. (2013) Accelerated deployment of low salinity waterflooding in Shell, in: IOR 2013-17th European Symposium on Improved Oil Recovery, European Association of Geoscientists & Engineers. [Google Scholar]
  • Brooks D., Matzakos A., Ayirala S., Ligthelm D., Cense A. (2010) Designer Water™ Flooding, in: 31st Annual Workshop and Symposium of the International Energy Agency (IEA) Collaborative Project on Enhanced Oil Recovery. [Google Scholar]
  • Gupta R., Smith G.G., Hu L., Willingham T., Lo Cascio M., Shyeh J.J., Harris C.R. (2011) Enhanced waterflood for carbonate reservoirs-impact of injection water composition, in: SPE Middle East Oil and Gas Show and Conference, Society of Petroleum Engineers. [Google Scholar]
  • Kaminsky R.D., Wattenbarger R.C., Szafranski R.C., Coutee A. (2007) Guidelines for polymer flooding evaluation and development, in: International Petroleum Technology Conference, International Petroleum Technology Conference. [Google Scholar]
  • Al-Attar H.H., Mahmoud M.Y., Zekri A.Y., Almehaideb R., Ghannam M. (2013) Low-salinity flooding in a selected carbonate reservoir: Experimental approach, J. Pet. Explor. Prod. Technol. 3, 139–149. [Google Scholar]
  • Sari A., Chen Y., Xie Q., Saeedi A. (2019) Low salinity water flooding in high acidic oil reservoirs: Impact of pH on wettability of carbonate reservoirs, J. Mol. Liq. 281, 444–450. [Google Scholar]
  • Xie Q., Saeedi A., Pooryousefy E., Liu Y. (2016) Extended DLVO-based estimates of surface force in low salinity water flooding, J. Mol. Liq. 221, 658–665. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.