Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Article Number 48
Number of page(s) 8
DOI https://doi.org/10.2516/ogst/2020035
Published online 14 July 2020
  • Economides M.J., Nolte K.G. (2000) Reservoir stimulation, Wiley, Chichester, pp. 13-1–17-15. [Google Scholar]
  • Daccord G. (1987) Chemical dissolution of a porous medium by a reactive fluid, Phys. Rev. Lett. 58, 5, 479. [CrossRef] [PubMed] [Google Scholar]
  • Bazin B., Abdulahad G. (1999) Experimental investigation of some properties of emulsified acid systems for stimulation of carbonate formations, in: Proceedings of the SPE Middle East Oil Show & Conference, pp. 347–356. [Google Scholar]
  • Bazin B. (2001) From matrix acidizing to acid fracturing: A laboratory evaluation of acid/rock interactions, SPE Prod. Facil. 16, 1, 22–29. [CrossRef] [Google Scholar]
  • Fredd C.N., Fogler H.S. (1999) Optimum conditions for wormhole formation in carbonate porous media: Influence of transport and reaction, SPE J. 4, 3, 196–205. [CrossRef] [Google Scholar]
  • Liu P., Yao J., Couples G.D., Ma J., Iliev O. (2017) 3-D modelling and experimental comparison of reactive flow in carbonates under radial flow conditions, Sci. Rep. 7, 1, 17711. [CrossRef] [PubMed] [Google Scholar]
  • Fredd C.N., Fogler H.S. (1998) Influence of transport and reaction on wormhole formation in porous media, AlChE J. 44, 9, 1933–1949. [CrossRef] [Google Scholar]
  • Daccord G., Touboul E., Lenormand R. (1989) Carbonate acidizing: toward a quantitative model of the wormholing phenomenon, SPE Prod. Eng. 4, 1, 63–68. [CrossRef] [Google Scholar]
  • Daccord G., Lenormand R., Liétard O. (1993) Chemical dissolution of a porous medium by a reactive fluid – I. Model for the “wormholing” phenomenon, Chem. Eng. Sci. 48, 1, 169–178. [Google Scholar]
  • Daccord G., Lietard O., Lenormand R. (1993) Chemical dissolution of a porous medium by a reactive fluid – II. Convection vs. reaction, behavior diagram, Chem. Eng. Sci. 48, 1, 179–186. [Google Scholar]
  • Schechter R.S., Gidley J.L. (1969) The change in pore size distribution from surface reactions in porous media, AlChE J. 15, 3, 339–350. [CrossRef] [Google Scholar]
  • Hung K.M., Hill A.D., Sepehrnoori K. (1989) A mechanistic model of wormhole growth in carbonate matrix acidizing and acid fracturing, J. Petrol. Technol. 41, 1, 59–66. [CrossRef] [Google Scholar]
  • Gdanski R. (1999) A fundamentally new model of acid wormholing in carbonates, in: Proceedings of the SPE European Formation Damage Conference, Society of Petroleum Engineers, The Hague, Netherlands, pp. 1–10. [Google Scholar]
  • Gong M., El-Rabaa A.M. (1999) Quantitative model of wormholing process in carbonate acidizing, in: Proceedings of Society of Petroleum Engineers, pp. 1–11. [Google Scholar]
  • Buijse M.A. (2000) Understanding wormholing mechanisms can improve acid treatments in carbonate formations, SPE Prod. Facil. 15, 3, 168–175. [CrossRef] [Google Scholar]
  • Hoefner M.L., Fogler H.S. (1988) Pore evolution and channel formation during flow and reaction in porous media, AlChE J. 34, 1, 45–54. [CrossRef] [Google Scholar]
  • Kang Q., Lichtner P.C., Viswanathan H.S., Abdel-Fattah A.I. (2010) Pore scale modeling of reactive transport involved in geologic CO2 sequestration, Transp. Porous Media 82, 1, 197–213. [Google Scholar]
  • Budek A., Szymczak P. (2012) Network models of dissolution of porous media, Phys. Rev. E 86, 5, 056318. [Google Scholar]
  • Tansey J. (2014) Pore-network modeling of carbonate acidization, in: Proceedings of the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, pp. 1–10. [Google Scholar]
  • Liu P., Yao J., Couples G.D., Ma J., Huang Z., Sun H. (2017) Modelling and simulation of wormhole formation during acidization of fractured carbonate rocks, J. Petrol. Sci. Eng. 154, 284–301. [CrossRef] [Google Scholar]
  • Yao J., Liu P., Huang Z., Wang Y., Yan X. (2017) Analysis of influencing factors on the optimum stimulation conditions of the acidizing treatment in carbonate reservoirs, Sci. Sin. Tech. 47, 1, 1–16. [CrossRef] [Google Scholar]
  • Yao J., Liu P., Huang Z., Wang Y., Yan X., Zeng Q. (2017) Status and progress of reactive flow simulations for carbonate reservoirs, Earth Sci. 42, 8, 1263–1272. [Google Scholar]
  • Liu P., Yao J., Couples G.D., Huang Z., Hai S., Ma J. (2017) Numerical modelling and analysis of reactive flow and wormhole formation in fractured carbonate rocks, Chem. Eng. Sci. 172, 143–157. [Google Scholar]
  • Fredd C.N., Miller M.J. (2000) Validation of carbonate matrix stimulation models, in: Proceedings of the SPE International Symposium on Formation Damage Control, Society of Petroleum Engineers, pp. 1–14 [Google Scholar]
  • Golfier F., Cesar Z., Bazin B., Lenormand R., Lasseux D., Quintard M. (2002) On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium, J. Fluid. Mech. 457, 213–254. [Google Scholar]
  • Panga M.K.R., Ziauddin M., Balakotaiah V. (2005) Two-scale continuum model for simulation of wormholes in carbonate acidization, AlChE J. 51, 12, 3231–3248. [CrossRef] [Google Scholar]
  • Maheshwari P., Ratnakar R.R., Kalia N., Balakotaiah V. (2013) 3-D simulation and analysis of reactive dissolution and wormhole formation in carbonate rocks, Chem. Eng. Sci. 90, 258–274. [Google Scholar]
  • Ghommem M., Zhao W., Dyer S., Qiu X., Brady D. (2015) Carbonate acidizing: Modeling, analysis, and characterization of wormhole formation and propagation, J. Petrol. Sci. Eng. 131, 18–33. [CrossRef] [Google Scholar]
  • Liu X., Ormond A., Bartko K., Li Y., Ortoleva P. (1997) A geochemical reaction-transport simulator for matrix acidizing analysis and design, J. Petrol. Sci. Eng. 17, 1, 181–196. [CrossRef] [Google Scholar]
  • Kalia N., Balakotaiah V. (2007) Modeling and analysis of wormhole formation in reactive dissolution of carbonate rocks, Chem. Eng. Sci. 62, 4, 919–928. [Google Scholar]
  • Cohen C.E., Ding D., Quintard M., Bazin B. (2008) From pore scale to wellbore scale: Impact of geometry on wormhole growth in carbonate acidization, Chem. Eng. Sci. 63, 12, 3088–3099. [Google Scholar]
  • Liu P., Couples G.D., Yao J., Huang Z., Song W., Ma J. (2018) A general method for simulating reactive dissolution in carbonate rocks with arbitrary geometry, Comput. Geosci. 22, 5, 1187–1201. [Google Scholar]
  • Kalia N., Balakotaiah V. (2010) Wormholing in perforated completions, in: Proceedings of the SPE International Symposium and Exhibiton on Formation Damage Control, Society of Petroleum Engineers, Lafayette, pp. 1–17. [Google Scholar]
  • Ratnakar R., Kalia N., Balakotaiah V. (2012) Carbonate matrix acidizing with gelled acids: An experiment-based modeling study, in: Proceedings of the SPE International Production and Operations Conference & Exhibition, Society of Petroleum Engineers, pp. 1–16. [Google Scholar]
  • Maheshwari P., Balakotaiah V. (2013) 3D simulation of carbonate acidization with HCl: Comparison with experiments, in: Proceedings of the SPE Production and Operations Symposium, Society of Petroleum Engineers, Oklahoma, pp. 1–17. [Google Scholar]
  • Ratnakar R.R., Kalia N., Balakotaiah V. (2013) Modeling, analysis and simulation of wormhole formation in carbonate rocks with in situ cross-linked acids, Chem. Eng. Sci. 90, 179–199. [Google Scholar]
  • Maheshwari P., Maxey J., Balakotaiah V. (2015) Reactive-dissolution modeling and experimental comparison of wormhole formation in carbonates with gelled and emulsified acids, SPE Prod. Oper. 31, 2, 103–119. [Google Scholar]
  • Maheshwari P., Maxey J.E., Balakotaiah V. (2014) Simulation and analysis of carbonate acidization with gelled and emulsified acids, in: Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Society of Petroleum Engineers, Abu Dhabi, pp. 1–28. [Google Scholar]
  • Kalia N., Balakotaiah V. (2009) Effect of medium heterogeneities on reactive dissolution of carbonates, Chem. Eng. Sci. 64, 2, 376–390. [Google Scholar]
  • Izgec O., Zhu D., Hill A.D. (2010) Numerical and experimental investigation of acid wormholing during acidization of vuggy carbonate rocks, J. Petrol. Sci. Eng. 74, 1, 51–66. [CrossRef] [Google Scholar]
  • Kalia N., Glasbergen G. (2009) Wormhole formation in carbonates under varying temperature conditions, in: Proceedings of the European Formation Damage Conference, Society of Petroleum Engineers, Scheveningen, pp. 1–19. [Google Scholar]
  • Kalia N., Glasbergen G. (2010) Fluid temperature as a design parameter in carbonate matrix acidizing, in: Proceedings of the SPE Production and Operations Conference and Exhibition, Society of Petroleum Engineers, pp. 1–21. [Google Scholar]
  • Liu P., Yan X., Yao J., Sun S. (2019) Modeling and analysis of the acidizing process in carbonate rocks using a two-phase thermal-hydrologic-chemical coupled model, Chem. Eng. Sci. 207, 215–234. [Google Scholar]
  • Wu Y., Salama A., Sun S. (2015) Parallel simulation of wormhole propagation with the Darcy–Brinkman–Forchheimer framework, Comput. Geotech. 69, 564–577. [Google Scholar]
  • Yuan T., Yang N., Qin G. (2016) Numerical modeling and simulation of coupled processes of mineral dissolution and fluid flow in fractured carbonate formations, Transp. Porous Media 114, 3, 747–775. [Google Scholar]
  • Zeng Q., Yao J., Shao J. (2020) An extended finite element solution for hydraulic fracturing with thermo-hydro-elastic–plastic coupling, Comput. Methods Appl. Mech. Eng. 364, 112967. [Google Scholar]
  • Yan X., Huang Z., Yao J., Li Y., Fan D., Sun H., Zhang K. (2018) An efficient numerical hybrid model for multiphase flow in deformable fractured-shale reservoirs, SPE J. 23, 4, 1412–1437. [CrossRef] [Google Scholar]
  • Li J., Zhang T., Sun S., Yu B. (2019) Numerical investigation of the POD reduced-order model for fast predictions of two-phase flows in porous media, Int. J. Numer. Meth. Heat Fluid Flow 29, 11, 4167–4204. [Google Scholar]
  • Seagraves A.N., Smart M.E., Ziauddin M.E. (2018) Fundamental wormhole characteristics in acid stimulation of perforated carbonates, in: Proceedings of the SPE International Conference and Exhibition on Formation Damage Control, Society of Petroleum Engineers, Lafayette, Louisiana, USA, 50 p. [Google Scholar]
  • Li Y., Liao Y., Zhao J., Peng Y., Pu X. (2017) Simulation and analysis of wormhole formation in carbonate rocks considering heat transmission process, J. Nat. Gas. Sci. Eng. 42, 120–132. [Google Scholar]
  • Liu P., Xue H., Zhao L., Zhao X., Cui M. (2016) Simulation of 3D multi-scale wormhole propagation in carbonates considering correlation spatial distribution of petrophysical properties, J. Nat. Gas Sci. Eng. 32, 81–94. [Google Scholar]
  • Liu N., Liu M. (2016) Simulation and analysis of wormhole propagation by VES acid in carbonate acidizing, J. Petrol. Sci. Eng. 138, 57–65. [CrossRef] [Google Scholar]
  • Maheshwari P., Balakotaiah V. (2013) Comparison of carbonate HCl acidizing experiments with 3D simulations, SPE J. 28, 4, 402–413. [Google Scholar]
  • Liu M., Zhang S., Mou J., Zhou F. (2013) Wormhole propagation behavior under reservoir condition in carbonate acidizing, Transp. Porous Media 96, 1, 203–220. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.