Engine Combustion Network – France
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Engine Combustion Network – France
Article Number 38
Number of page(s) 16
DOI https://doi.org/10.2516/ogst/2020036
Published online 15 June 2020
  • Engine Combustion Network, https://ecn.sandia.gov/. [Google Scholar]
  • Pickett L., Genzale C., Bruneaux G., Malbec L.M., Hermant L., Christiansen C., Schramm J. (2010) Comparison of diesel spray combustion in different high-temperature, high-pressure facilities, SAE Int. J. Engines 3, 2, 156–181. [Google Scholar]
  • Bardi M., Payri R., Malbec L.M., Bruneaux G., Pickett L.M., Manin J., Bazyn T., Genzale C. (2012) Engine Combustion Network: Comparison of spray development, vaporization and combustion in different combustion vessels, Atomization Spray 22, 10, 807–842. [Google Scholar]
  • Bardi M., Bruneaux G., Malbec L.-M. (2016) Study of ECN injectors’ behavior repeatability with focus on aging effect and soot fluctuations, SAE Technical Papers 2016-01-0845. [Google Scholar]
  • Hespel C., Ben Houidi M., Ajrouche H., Foucher F., Haidous Y., Moreau B., Nilaphai O., Rousselle C., Bellenoue M., Claverie A., Sotton J., Strozzi C., Bardi M., Bruneaux G., Malbec L.-M. Characterization of the ECN spray A in different facilities. Part 2: Spray vaporization and combustion, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles. Article submitted. [Google Scholar]
  • Ben Houidi M., Hespel C., Bardi M., Nilaphai O., Malbec L.-M., Sotton J., Bellenoue M., Strozzi C., Ajrouche H., Foucher F., Moreau B., Rousselle C., Bruneaux G. (2020) Characterization of the ECN spray A in different facilities. Part 1: boundary conditions characterization, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 75, 35. doi: 10.2516/ogst/2020023. [CrossRef] [Google Scholar]
  • Maes N., Meijer M., Dam N., Somers B., Baya Toda H., Bruneaux G., Skeen S.A., Pickett L.M., Manin J. (2016) Characterization of spray A flame structure for parametric variations in ECN constant-volume vessels using chemiluminescence and laser-induced fluorescence, Combust. Flame 174, 138–151. [Google Scholar]
  • Idicheria C.A., Pickett L.M. (2007) Quantitative mixing measurements in a vaporizing diesel spray by Rayleigh imaging, SAE Technical Paper 2007–01-0647. [Google Scholar]
  • Wright Y.M., Margari O.-N., Boulouchos K., De Paola G., Mastorakos E. (2010) Experiments and simulations of n-heptane spray auto-ignition in a closed combustion chamber at diesel engine conditions, Flow Turb. Combust. 84, 49–78. [CrossRef] [Google Scholar]
  • Baritaud T.A., Heinze T.A., Le Coz J.F. (1994) Spray and self-ignition visualization in a DI diesel engine, SAE Technical Paper 940681. [Google Scholar]
  • Liao C., Terao K. (1995) A statistical investigation of ignition in a fuel spray using a shock tube. JSME, Int. J. Ser. B 38, 136–142. [CrossRef] [Google Scholar]
  • Mastorakos E., Baritaud T.A., Poinsot T.J. (1997) Numerical simulation of autoignition in turbulent mixing flows, Combust. Flame 109, 198–223. [Google Scholar]
  • Hilbert R., Thévenin D. (2002) Autoignition of turbulent non-premixed flames investigated using direct numerical simulation, Combust. Flame 128, 22–37. [Google Scholar]
  • Mastorakos E. (2009) Ignition of turbulent non-premixed flames, Prog. Energy Combust. Sci. 35, 57–97. [Google Scholar]
  • Aggarwal S.K. (1998) A review of spray ignition phenomena: Present status and future research, Prog. Energy Combust. Sci. 24, 6, 565–600. [Google Scholar]
  • Tagliante F., Malbec L.-M., Bruneaux G., Pickett L.M., Angelberger C. (2018) Experimental study of the stabilization mechanism of a lifted diesel-type flame using combined optical diagnostics and laser-induced plasma ignition, Combust. Flame 197, 215–226. [Google Scholar]
  • Tagliante F., Poinsot T., Pickett L.M., Pepiot P., Malbec L.-M., Bruneaux G., Angelberger C. (2019) A conceptual model of the flame stabilization mechanisms for a lifted Diesel-type flame based on direct numerical simulation and experiments, Combust. Flame 201, 65–77. [Google Scholar]
  • Dalakoti D.K., Savard B., Hawkes E.R., Wehrfritz A., Wang H., Day M.S., Bell J.B. (2020) Direct numerical simulation of a spatially developing n-dodecane jet flame under Spray A thermochemical conditions: Flame structure and stabilisation mechanism, Combust. Flame 217, 57–76. [Google Scholar]
  • Skeen A.S., Manin J., Pickett L.M. (2015) Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames, Proc. Combust. Inst. 35, 3167–3174. [Google Scholar]
  • Dahms R.N., Paczko G.A., Skeen S.A., Pickett L.M. (2017) Understanding the ignition mechanism of high-pressure spray flames, Proc. Combust. Inst. 36, 2, 2615–2623. [Google Scholar]
  • Krisman A., Hawkes E.R., Talei M., Bhagatwala A., Chen J.H. (2015) Polybrachial structures in dimethyl ether edge-flames at negative temperature coefficient conditions, Proc. Combust. Inst. 35, 999–1006. [Google Scholar]
  • Krisman A., Hawkes E.R., Talei M., Bhagatwala A., Chen J.H. (2017) A direct numerical simulation of cool-flame affected autoignition in diesel engine-relevant conditions, Proc. Combust. Inst. 36, 3567–3575. [Google Scholar]
  • Borghesi G., Krisman A., Lu T., Chen J.H. (2018) Direct numerical simulation of a temporally evolving air/n-dodecane jet at low-temperature diesel-relevant conditions, Combust. Flame 195, 183–202. [Google Scholar]
  • Krisman A., Hawkes E.R., Chen J.H. (2019) A parametric study of ignition dynamics at ECN spray A thermochemical conditions using 2D DNS, Proc. Combust. Inst. 37, 4787–4795. [Google Scholar]
  • Ju Y., Reuter C.B., Yehia O.R., Farouk T.I., Won S.H. (2019) Dynamics of cool flames, Prog. Energy Combust. Sci. 75, 100787. [Google Scholar]
  • Strozzi C., Claverie A., Prevost V., Sotton J., Bellenoue M. (2019) HCCI and SICI combustion modes analysis with simultaneous PLIF imaging of formaldehyde and high-speed chemiluminescence in a rapid compression machine, Combust. Flame 202, 58–77. [Google Scholar]
  • Bakker P.C., Maes N., Dam N. (2017) The potential of on- and off-resonant formaldehyde imaging combined with bootstrapping in diesel sprays, Combust. Flame 182, 20–27. [Google Scholar]
  • ECN6 Proceedings. (2018) Oral presentation, flame structure topic, in: 6th workshop of the Engine Combustion Network, ECN6, 10–11 September, 2018, Universitat Politecnica de Valencia, Spain. https://ecn.sandia.gov/ecn-workshop/ecn6-workshop. [Google Scholar]
  • Pei Y., Som S., Pomraning E., Senecal P.K., Skeen S.A., Manin J., Pickett L.M. (2015) Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions, Combust. Flame 162, 4442–4455. [Google Scholar]
  • Engine Combustion Network. https://ecn.sandia.gov/schlieren-code/. [Google Scholar]
  • Nicoli C., Clavin P., Liñan A. (1990) Travelling waves in the cool flame regime, in: Gray P., Université libre de Bruxelles, University of Leeds, Commission of the European Communities (eds), Spatial inhomogeneities and transient behavior in chemical kinetics, Proceedings in Nonlinear Science, Manchester University Press, Manchester, UK, pp. 317–334. [Google Scholar]
  • Quintens H., Bellenoue M., Strozzi C., Zitoun R. (2019) Deflagration/autoignition/detonation transition induced by flame propagation in a n-decane/O2/Ar mixture, Flow Turb. Combust. 102, 3, 735–755. [CrossRef] [Google Scholar]
  • Markides C.N., Mastorakos E. (2008) Flame propagation following the autoignition of axisymmetric hydrogen, acetylene and normal-heptane plumes in turbulent coflows of hot air, J. Eng. Gas Turb. Power 130, 011502. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.