Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 63
Number of page(s) 11
Published online 16 July 2019
  • Gonzalez D.L., Hirasaki G.J., Creek J., Chapman W.G. (2007) Modeling of asphaltene precipitation due to changes in composition using the perturbed chain statistical associating fluid theory equation of state, Energy Fuels 21, 1231–1242. [Google Scholar]
  • Leontaritis K., Amaefule J., Charles R. (1994) A systematic approach for the prevention and treatment of formation damage caused by asphaltene deposition, SPE Prod. Facil. 9, 157–164. [CrossRef] [Google Scholar]
  • Mansoori G.A. (1997) Modeling of asphaltene and other heavy organic depositions, J. Pet. Sci. Eng. 17, 101–111. [Google Scholar]
  • Schou Pedersen K., Hasdbjerg C. (2007) PC-SAFT equation of state applied to petroleum reservoir fluids, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Vargas F.M., Creek J.L., Chapman W.G. (2010) On the development of an asphaltene deposition simulator, Energy Fuels 24, 2294–2299. [Google Scholar]
  • Speight J. (2004) Petroleum asphaltenes-Part 1: Asphaltenes, resins and the structure of petroleum, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 59, 467–477. [CrossRef] [Google Scholar]
  • Groenzin H., Mullins O.C. (2000) Molecular size and structure of asphaltenes from various sources, Energy Fuels 14, 677–684. [Google Scholar]
  • Boduszynski M. (1979) Asphaltenes in petroleum asphalts: composition and formation, Am. Chem. Soc., Div. Pet. Chem., Prepr. (United States) 24. [Google Scholar]
  • Rodgers R.P., Marshall A.G. (2007) Petroleomics: Advanced characterization of petroleum-derived materials by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), in: Asphaltenes, heavy oils, and petroleomics, Springer, New York, pp. 63–93. [CrossRef] [Google Scholar]
  • Merdrignac I., Desmazieres B., Terrier P., Delobel A., Laprevote O. (2004) Analysis of raw and hydrotreated asphaltenes using off-line and on-line SEC/MS coupling, Proceedings of the Heavy Organic Deposition, Los Cabos, Baja California, Mexico. [Google Scholar]
  • Qian K., Edwards K.E., Siskin M., Olmstead W.N., Mennito A.S., Dechert G.J., Hoosain N.E. (2007) Desorption and ionization of heavy petroleum molecules and measurement of molecular weight distributions, Energy Fuels 21, 1042–1047. [Google Scholar]
  • Hortal A.R., Martínez-Haya B., Lobato M.D., Pedrosa J.M., Lago S. (2006) On the determination of molecular weight distributions of asphaltenes and their aggregates in laser desorption ionization experiments, J Mass Spectrometry 41, 960–968. [CrossRef] [PubMed] [Google Scholar]
  • Akbarzadeh K., Hammami A., Kharrat A., Zhang D., Allenson S., Creek J., Kabir S., Jamaluddin A., Marshall A.G., Rodgers R.P. (2007) Asphaltenes – problematic but rich in potential, Oilfield Rev. 19, 22–43. [Google Scholar]
  • Mullins O.C., Sheu E.Y., Hammami A., Marshall A.G. (2007) Asphaltenes, heavy oils, and petroleomics, Springer Science & Business Media, New York. [CrossRef] [Google Scholar]
  • Creek J.L. (2005) Freedom of action in the state of asphaltenes: Escape from conventional wisdom, Energy Fuels 19, 1212–1224. [Google Scholar]
  • Al-Sahhaf T.A., Fahim M.A., Elkilani A.S. (2002) Retardation of asphaltene precipitation by addition of toluene, resins, deasphalted oil and surfactants, Fluid Phase Equilib. 194, 1045–1057. [Google Scholar]
  • Chang C.-L., Scott Fogler H. (1996) Peptization and coagulation of asphaltenes in apolar media using oil-soluble polymers, Fuel Sci. Technol. Int. 14, 75–100. [CrossRef] [Google Scholar]
  • Mohebbinia S. (2013) Advanced equation of state modeling for compositional simulation of gas floods, Ph.D. dissertation, Petroleum and Geosystems Engineering Department, The University of Texas at Austin. [Google Scholar]
  • Tabzar A., Fathinasab M., Salehi A., Bahrami B., Mohammadi A.H. (2018) Multiphase flow modeling of asphaltene precipitation and deposition, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 51. [CrossRef] [Google Scholar]
  • Bagheri M., Kharrat R., Ghotby C. (2011) Experimental investigation of the asphaltene deposition process during different production schemes, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 66, 507–519. [CrossRef] [Google Scholar]
  • Leontaritis K., Mansoori G. (1987) Asphaltene flocculation during oil production and processing: A thermodynamic collodial model, SPE International Symposium on Oilfield Chemistry, Society of Petroleum Engineers. [Google Scholar]
  • Pfeiffer J.P., Saal R. (1940) Asphaltic bitumen as colloid system, J. Phys. Chem. 44, 139–149. [Google Scholar]
  • Boek E.S., Yakovlev D.S., Headen T.F. (2009) Quantitative molecular representation of asphaltenes and molecular dynamics simulation of their aggregation, Energy Fuels 23, 1209–1219. [Google Scholar]
  • Buckley J., Hirasaki G., Liu Y., Von Drasek S., Wang J., Gill B. (1998) Asphaltene precipitation and solvent properties of crude oils, Pet. Sci. Technol. 16, 251–285. [Google Scholar]
  • Czarnecki J. (2008) Stabilization of water in crude oil emulsions. Part 2, Energy Fuels 23, 1253–1257. [Google Scholar]
  • Goual L. (2009) Impedance spectroscopy of petroleum fluids at low frequency, Energy Fuels 23, 2090–2094. [Google Scholar]
  • David Ting P., Hirasaki G.J., Chapman W.G. (2003) Modeling of asphaltene phase behavior with the SAFT equation of state, Pet. Sci. Technol. 21, 647–661. [Google Scholar]
  • Flory P.J. (1942) Thermodynamics of high polymer solutions, J. Chem. Phys. 10, 51–61. [Google Scholar]
  • Hildebrand J.H. (1919) Solubility. III. Relative values of internal pressures and their practical application, J. Am. Chem. Soc. 41, 1067–1080. [Google Scholar]
  • Scatchard G. (1931) Equilibria in non-electrolyte solutions in relation to the vapor pressures and densities of the components, Chem. Rev. 8, 321–333. [Google Scholar]
  • Scott R.L., Magat M. (1945) The thermodynamics of high-polymer solutions: I. The free energy of mixing of solvents and polymers of heterogeneous distribution, J. Chem. Phys. 13, 172–177. [Google Scholar]
  • Panuganti S.R., Vargas F.M., Gonzalez D.L., Kurup A.S., Chapman W.G. (2012) PC-SAFT characterization of crude oils and modeling of asphaltene phase behavior, Fuel 93, 658–669. [CrossRef] [Google Scholar]
  • Chapman W.G., Gubbins K.E., Jackson G., Radosz M. (1990) New reference equation of state for associating liquids, Ind. Eng. Chem. Res. 29, 1709–1721. [Google Scholar]
  • Gross J., Sadowski G. (2002) Application of the perturbed-chain SAFT equation of state to associating systems, Ind. Eng. Chem. Res. 41, 5510–5515. [Google Scholar]
  • Gonzalez Rodriguez D.L. (2008) Modeling of asphaltene precipitation and deposition tendency using the PC-SAFT equation of state, PhD dissertation, Rice University, Houston, Texas. [Google Scholar]
  • Vargas F.M., Gonzalez D.L., Hirasaki G.J., Chapman W.G. (2009) Modeling asphaltene phase behavior in crude oil systems using the perturbed chain form of the statistical associating fluid theory (PC-SAFT) equation of state†, Energy Fuels 23, 1140–1146. [Google Scholar]
  • Panuganti S.R., Tavakkoli M., Vargas F.M., Gonzalez D.L., Chapman W.G. (2013) SAFT model for upstream asphaltene applications, Fluid Phase Equilib. 359, 2–16. [Google Scholar]
  • Zúñiga-Hinojosa M.A., Justo-García D.N., Aquino-Olivos M.A., Román-Ramírez L.A., García-Sánchez F. (2014) Modeling of asphaltene precipitation from n-alkane diluted heavy oils and bitumens using the PC-SAFT equation of state, Fluid Phase Equilib. 376, 210–224. [Google Scholar]
  • Sabeti M., Rahimbakhsh A., Nikookar M., Mohammadi A.H. (2015) Estimation of asphaltene precipitation and equilibrium properties of hydrocarbon fluid phases using the PC-SAFT equation of state, J. Mol. Liquids 209, 447–460. [CrossRef] [Google Scholar]
  • Aguilar-Cisneros H., Uribe-Vargas V., Carreón-Calderón B., Domínguez-Esquivel J.M., Ramirez-de-Santiago M. (2017) Hydrogen solubility in heavy undefined petroleum fractions using group contributions methods, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 2. [CrossRef] [Google Scholar]
  • Nasrifar K., Rahmanian N. (2018) Equations of state with group contribution binary interaction parameters for calculation of two-phase envelopes for synthetic and real natural gas mixtures with heavy fractions, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 7. [CrossRef] [Google Scholar]
  • Michelsen M.L. (1982) The isothermal flash problem. Part I. Stability, Fluid Phase Equilib. 9, 1–19. [Google Scholar]
  • Privat R., Gani R., Jaubert J.-N. (2010) Are safe results obtained when the PC-SAFT equation of state is applied to ordinary pure chemicals? Fluid Phase Equilib. 295, 76–92. [Google Scholar]
  • Jamaluddin A., Joshi N., Iwere F., Gurpinar O. (2002) An investigation of asphaltene instability under nitrogen injection, Society of Petroleum Engineers, Mexico. [Google Scholar]
  • Gonzalez D.L., Ting P.D., Hirasaki G.J., Chapman W.G. (2005) Prediction of asphaltene instability under gas injection with the PC-SAFT equation of state, Energy Fuels 19, 1230–1234. [Google Scholar]
  • Tavakkoli M., Panuganti S.R., Taghikhani V., Pishvaie M.R., Chapman W.G. (2013) Precipitated asphaltene amount at high-pressure and high-temperature conditions, Energy Fuels 28, 1596–1610. [Google Scholar]
  • Barton A.F.M. (1991) Handbook of solubility parameters and other cohesion parameters, CRC, New York, NY. [Google Scholar]
  • Wang J.X., Buckley J.S. (2001) A two-component solubility model of the onset of asphaltene flocculation in crude oils, Energy Fuels 15, 1004–1012. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.