- David P.A., Jr Hermanson, Wagner M.J. (2015) Challenges facing large-diameter pipelines crossing mountains, Pipeline Gas J. 242, 1. [Google Scholar]
- Shashi Menon E. (2011) Pipeline planning and construction field manual, Gulf Professional Publishing, Lake Havasu City, AZ, USA. [Google Scholar]
- Orynyak I.V., Lokhman I.V., Sidor M.D., Radchenko S.A. (2009) Analysis of the stress-strain state of an air crossing of pipeline in the course of repair, Strength Mater. 41, 581–591. [CrossRef] [Google Scholar]
- Timashev S.A., Bushinskaya A.V. (2016) Assessment of the reliability level embedded in pipeline design codes, J. Pipeline Eng. 15, 2, 121–131. [Google Scholar]
- Oswell J.M. (2016) Soil mechanics for pipeline stress analysis, Naviq Consulting Inc., Calgary, Canada. [Google Scholar]
- Adebanjo O., Simms N. (2016) Upheaval buckling of pipelines, J. Pipeline Eng. 15, 3, 157–168. [Google Scholar]
- Antaki G.A. (2003) Piping and pipeline engineering: Design, construction, maintenance, integrity, and repair, Marcel Dekker Inc., New York, USA. [CrossRef] [Google Scholar]
- Borodavkin P.P. (2011) Underground trunk pipelines, Energy Press, Moscow, Russia, 479 p. [Google Scholar]
- National Oilwell Varco (2013) Engineering & piping design guide, Sand Springs, Oklahoma, USA. [Google Scholar]
- Mark L.Talesnick, Frydman Sam (2018) Soil pressure and pipe deformation measurements for characterizing flexible pipe-soil systems under shallow cover, J. Pipeline Syst. Eng. Pract. 9, 1. [Google Scholar]
- Bakhtyar F., Kenny S. (2014) Development of a fatigue life assessment tool for pipelines with local wrinkling through physical testing and numerical modelling, ASME. International Conference on Offshore Mechanics and Arctic Engineering 6B: Pipeline and Riser Technology, San Francisco, California, USA, June 8–13, 2014. [Google Scholar]
- Yavarov A.V. (2012) Numerical simulation of the resistance of the soil massif to the subter-ranean pipeline displacement, Electr. Sci. J. Oil Gas Bus. 3, 360–374. [Google Scholar]
- Elshimi T.M., Moore I.D. (2013) Modeling the effects of backfilling and soil compaction beside shallow buried pipes, J. Pipeline Syst. Eng. Pract. 4, 4. [CrossRef] [Google Scholar]
- Pryhorovska T.O. (2017) Study on rock reaction force depending on PDC cutter placement, Mach. Sci. Technol. 21, 1, 37–66. [CrossRef] [Google Scholar]
- Pryhorovska T.A., Chaplinskiy S.S. (2018) Finite element modeling of rock mass cutting by cutters for PDC drill bits, Neftyanoe Khozyaystvo – Oil Ind. 1, 38–41. [CrossRef] [Google Scholar]
- Shats’kyi I.P., Struk A.B. (2009) Stressed state of pipeline in zones of soil local fracture, Strength Mater. 41, 5, 548–553. [CrossRef] [Google Scholar]
- Zhang J., Liang Z., Han C.J. (2015) Finite element analysis of wrinkling of buried pressure pipeline under strike-slip fault, Mechanika 21, 3, 180–186. [Google Scholar]
- Shats’kyi I.P., Makoviichuk M.V. (2009) Analysis of the limiting state of cylindrical shells with cracks with regard for the contact of crack lips, Strength Mater. 41, 5, 560–565. [CrossRef] [Google Scholar]
- Shatskii I.P., Makoviichuk N.V. (2011) Effect of closure of collinear cracks on the stress-strain state and the limiting equilibrium of bent shallow shells, J. Appl. Mech. Tech. Phys. 52, 3, 464–470. [CrossRef] [Google Scholar]
- Dovbnya K.M., Hryhorchuk Y.V (2016) Stressed state of shell of double curvature with two collinear cracks under bending, J. Math. Sci. 212, 1, 98–105. [CrossRef] [Google Scholar]
- Shats’kyi I.P. (2015) Limiting equilibrium of a plate with partially healed crack, Mater. Sci. 51, 3, 322–330. [CrossRef] [Google Scholar]
- Marukha V.I., Panasyuk V.V., Sylovanyuk V.P. (2014) Injection technologies for the repair of damaged concrete structures, Springer, New York, NY. [Google Scholar]
- Shatskyi I., Popadyuk I., Velychkovych A. (2018) Hysteretic properties of shell dampers, in: J. Awrejcewicz (ed), Dynamical systems in applications. DSTA 2017, Springer proceedings in mathematics & statistics. Springer, Cham, Switzerland. [Google Scholar]
- Popadyuk I.Y, Shatskyi I.P., Shopa V.M., Velychkovych A.S. (2016) Frictional interaction of a cylindrical shell with deformable filler under nonmonotonic loading, J. Math. Sci. 215, 2, 243–253. [CrossRef] [Google Scholar]
- Velichkovich A.S., Dalyak T.M. (2015) Assessment of stressed state and performance characteristics of jacketed spring with a cut for drill shock absorber, Chem. Petrol. Eng. (New York: Springer) 51, 188–193. [CrossRef] [Google Scholar]
- Shatskyi I.P., Ropyak L.Y., Makoviichuk M.V. (2016) Strength optimization of a two-layer coating for the particular local loading conditions, Strength Mater. 48, 5, 726–730. [CrossRef] [Google Scholar]
- Ropyak L.Y., Shatskyi I.P., Makoviichuk M.V. (2017) Influence of the oxide-layer thickness on the ceramic-aluminium coating resistance to indentation, Metallofiz. Noveishie Tekhnol. 39, 4, 517–524. [CrossRef] [Google Scholar]
- Velichkovich A., Dalyak T., Petryk I. (2018) Slotted shell resilient elements for drilling shock absorbers, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 34. [CrossRef] [Google Scholar]
- Velichkovich A.S., Popadyuk I.I., Shopa V.M. (2011) Experimental study of shell flexible component for drilling vibration damping devices, Chem. Petrol. Eng. (New York: Springer) 46, 518–524. [CrossRef] [Google Scholar]
- Panevnik D.A., Velichkovich A.S. (2017) Assessment of the stressed state of the casing of the above-bit hydroelevator, Neftyanoe Khozyaystvo – Oil Ind. 1, 70–73. [Google Scholar]
- Vlasiy O., Mazurenko V., Ropyak L., Rogal O. (2017) Improving the aluminum drill pipes stability by optimizing the shape of protector thickening, EEJET 85, 25–31. [CrossRef] [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
|
|
---|---|---|
Article Number | 65 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.2516/ogst/2019039 | |
Published online | 30 July 2019 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.