Dossier LES4ICE’18 : LES for Internal Combustion Engine Flows Conference
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Dossier LES4ICE’18 : LES for Internal Combustion Engine Flows Conference
Article Number 56
Number of page(s) 16
Published online 21 June 2019
  • Jiménez J. (2003) Computing high-Reynolds-number turbulence: will simulations ever replace experiments? J. Turbulence 4, N22. doi: 10.1088/1468-5248/4/1/022. [Google Scholar]
  • Chevillard S., Colin O., Bohbot J., Wang M., Pomraning E., Senecal P.K. (2017) Advanced methodology to investigate knock for downsized gasoline direct injection engine using 3D RANS simulations, in: WCX. 17: SAE World Congress Experience, SAE International. doi: 10.4271/2017-01-0579. [Google Scholar]
  • Bohbot J., Colin O., Velghe A., Michel J.B., Wang M., Senecal P.K., Pomraning E. (2016) An innovative approach combining adaptive mesh refinement, the ECFM3Z turbulent combustion model, and the TKI tabulated auto-ignition model for diesel engine CFD simulations, in: SAE 2016 World Congress and Exhibition, SAE International. doi: 10.4271/2016-01-0604. [Google Scholar]
  • Colin O., Benkenida A. (2004) The 3-zones extended coherent flame model (ECFM3Z) for computing premixed/diffusion combustion, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 59, 6, 593–609. doi: 10.2516/ogst:2004043. [Google Scholar]
  • Scarcelli R., Richards K., Pomraning E., Senecal P.K., Wallner T., Sevik J. (2016) Cycle-to-cycle variations in multi-cycle engine RANS simulations, in: SAE 2016 World Congress and Exhibition, doi: 10.4271/2016-01-0593. [Google Scholar]
  • Robert A., Richard S., Colin O., Martinez L., De Francqueville L. (2015) LES prediction and analysis of knocking combustion in a spark ignition engine, Proceedings of the Combustion Institute 35, 3, 2941–2948. doi: 10.1016/j.proci.2014.05.154. [CrossRef] [Google Scholar]
  • Pope S.B. (2000) Turbulent flows, Cambridge University Press, Cambridge, UK, doi: 10.1017/CBO9780511840531. [Google Scholar]
  • Nicoud E. (2018) Quantifying combustion robustness in GDI engines by Large-Eddy simulation, PhD Thesis, Université Paris-Saclay, Saint-Aubin, France. [Google Scholar]
  • Schumann U. (1975) Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli, J. Comput. Phys. 18, 4, 376–404. doi: 10.1016/0021-9991(75)90093-5. [NASA ADS] [CrossRef] [Google Scholar]
  • Sagaut P., Deck S., Terracol M. (2013) Multiscale and multiresolution approaches in turbulence: LES, DES and hybrid RANS/LES methods/applications and guidelines, 2nd edn, Imperial College Press, London. [CrossRef] [Google Scholar]
  • Buhl S., Dietzsch F., Buhl C., Hasse C. (2017) Comparative study of turbulence models for scale-resolving simulations of internal combustion engine flows, Comput. Fluids 156, 66–80. doi: 10.1016/j.compfluid.2017.06.023. [Google Scholar]
  • Basara B. (2015) PANS method as a computational framework from an industrial perspective, in: Girimaji S., Haase W., Peng S.H., Schwamborn D. (eds), Progress in hybrid RANS-LES modelling, volume 137 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer, Cham, Switzerland, pp. 3–17. [CrossRef] [Google Scholar]
  • Manceau R. (2018) Progress in hybrid temporal LES, in: Hoarau Y., Peng S.-H., Schwamborn D., Revell A. (eds), Progress in hybrid RANS-LES modelling, Springer, Berlin Heidelberg/New York NY, pp. 9–25. [CrossRef] [Google Scholar]
  • Pruett C. (2008) Temporal large-eddy simulation: theory and implementation, Theor. Comput. Fluid Dyn. 22, 3, 275–304. doi: 10.1007/s00162-007-0063-0. [CrossRef] [Google Scholar]
  • Fadai-Ghotbi A., Christophe F., Manceau R., Gatski T., Boree J. (2010) Temporal filtering: A consistent formalism for seamless hybrid RANS-LES modeling in inhomogeneous turbulence, Int. J. Heat Fluid Flow 31, 378–389. doi: 10.1016/j.ijheatfluidflow.2009.12.008. [CrossRef] [Google Scholar]
  • Saric S., Jakirlic S., Breuer M., Jaffrézic B., Deng G., Chikhaoui O., Fröhlich J., von Terzi D., Manhart M., Peller N. (2007) Evaluation of detached Eddy simulations for predicting the flow over periodic hills, ESAIM: Proc. 16, 133–145. doi: 10.1051/proc:2007016. [CrossRef] [Google Scholar]
  • Fröhlich J., von Terzi D. (2008) Hybrid LES/RANS methods for the simulation of turbulent flows, Prog. Aerosp. Sci. 44, 5, 349–377. doi: 10.1016/j.paerosci.2008.05.001. [Google Scholar]
  • Gatski T., Rumsey C., Manceau R. (2007) Current trends in modelling research for turbulent aerodynamic flows, Philos. Trans. R. Soc. Lond. A 365, 1859, 2389–2418. [CrossRef] [Google Scholar]
  • Fadai-Ghotbi A., Friess C., Manceau R., Borée J. (2010) A seamless hybrid RANS-LES model based on transport equations for the subgrid stresses and elliptic blending, Phys. Fluids 22, 5, 055104. doi: 10.1063/1.3415254. [CrossRef] [Google Scholar]
  • Chaouat B. (2017) The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows, Flow Turbul. Combust. 99, 2, 279–327. doi: 10.1007/s10494-017-9828-8. [CrossRef] [PubMed] [Google Scholar]
  • Schiestel R., Dejoan A. (2005) Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations, Theor. Comput. Fluid Dyn. 18, 6, 443–468. doi: 10.1007/s00162-004-0155-z. [CrossRef] [Google Scholar]
  • Chaouat B., Schiestel R. (2005) A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows, Phys. Fluids 17, 6, 065106. doi: 10.1063/1.1928607. [CrossRef] [Google Scholar]
  • Schiestel R. (1987) Multiple-time-scale modeling of turbulent flows in one-point closures, Phys. Fluids 30, 3, 722–731. doi: 10.1063/1.866322. [NASA ADS] [CrossRef] [Google Scholar]
  • Tran T., Manceau R., Perrin R., Borée J., Nguyen A. (2012) A hybrid temporal LES approach. Application to flows around rectangular cylinders, Proc. 9th ERCOFTAC Int. Symp. on Eng. Turb. Modelling and Measurements, Thessaloniki, Greece. [Google Scholar]
  • Travin A., Shur M., Strelets M., Spalart P.R. (2002) Physical and numerical upgrades in the detached-Eddy simulation of complex turbulent flows, in: Friedrich R., Rodi W. (eds), Advances in LES of complex flows, Springer, Dordrecht, The Netherlands, pp. 239–254. [Google Scholar]
  • Manceau R., Gatski T., Friess C. (2010) Recent progress in hybrid temporal LES-RANS modeling, in: Pereira J.C.F., Sequeira A. (eds), European Conference on Computational Fluid Dynamics, V, Technical University of Lisbon, Lisbon, pp. 1525–1532. [Google Scholar]
  • Friess C., Manceau R., Gatski T.B. (2015) Toward an equivalence criterion for Hybrid RANS/LES methods, Comput. Fluids 122, 233–246. doi: 10.1016/j.compfluid.2015.08.010. [CrossRef] [Google Scholar]
  • Spalart P.R. (2009) Detached-eddy simulation, Annu. Rev. Fluid Mech. 41, 1, 181–202. doi: 10.1146/annurev.fluid.010908.165130. [Google Scholar]
  • Menter F., Ferreira J.C., Esch T., Konno B. (2003) The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines, in: Proceedings of the International Gas Turbine Congress 2003, Tokyo, IGTC2003-TS-059pp. 2–7. [Google Scholar]
  • Oliveira P.J., Issa R.I. (2001) An improved PISO algorithm for the computation of buoyancy-driven flows, Numer. Heat Transf. B Fundam. 40, 6, 473–493. doi: 10.1080/104077901753306601. [CrossRef] [Google Scholar]
  • Redlich O., Kwong J.N.S. (1949) On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions, Chem. Rev. 44, 1, 233–244. doi: 10.1021/cr60137a013. [CrossRef] [PubMed] [Google Scholar]
  • Rhie C.M., Chow W.L. (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J. 21, 11, 1525–1532. doi: 10.2514/3.8284. [NASA ADS] [CrossRef] [Google Scholar]
  • Jakirlic S., Jester-Zurker R., Tropea C. (2001) 9th ERCOFTAC/IAHR/COST Workshop on Refined Turbulence Modelling, Darmstadt University. [Google Scholar]
  • Menter F., Rumsey C. (1994) Assessment of two-equation turbulence models for transonic flows, in: Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences, American Institute of Aeronautics and Astronautics. doi: 10.2514/6.1994-2343. [Google Scholar]
  • Nicoud F., Toda H.B., Cabrit O., Bose S., Lee L. (2011) Using singular values to build a subgrid-scale model for large eddy simulations, Phys. Fluids 23, 8, 085106. doi: 10.1063/1.3623274. [CrossRef] [Google Scholar]
  • Werner H., Wengle H. (1993) Large-eddy simulation of turbulent flow over and around a cube in a plate channel, in: Durst F., Friedrich R., Launder B.E., Schmidt F.W., Schumann U., Whitelaw J.H. (eds), Turbulent shear flows 8, Springer, Berlin, Heidelberg, pp. 155–168. [CrossRef] [Google Scholar]
  • Fadai-Ghotbi A., Manceau R., Borée J. (2009) Revisiting URANS computations of the flow behind a backward-facing step using second moment closures, in: Deconinck H., Dick E. (eds), Computational fluid dynamics 2006, Springer, Berlin, Heidelberg, pp. 505–510. [CrossRef] [Google Scholar]
  • Frohlich J., Mellen C.P., Rodi W., Temmerman L., Leschziner M.A. (2005) Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions, J. Fluid Mech. 526, 19–66. doi: 10.1017/S0022112004002812. [CrossRef] [Google Scholar]
  • Lee M., Moser R.D. (2015) Direct numerical simulation of turbulent channel flow up to Ret ~ 5200, J. Fluid Mech. 774, 395–415. doi: 10.1017/jfm.2015.268. [CrossRef] [Google Scholar]
  • Thobois L., Rymer G., Souleres T., Poinsot T. (2004) Large-eddy simulation in IC engine geometries, in: 2004 SAE Fuels Lubricants Meeting Exhibition, SAE International. doi: 10.4271/2004-01-1854. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.