Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 58
Number of page(s) 16
DOI https://doi.org/10.2516/ogst/2019026
Published online 21 June 2019
  • Abdollahipour A., Fatehi Marji M., Yarahmadi Bafghi A., Gholamnejad J. (2015) Simulating the propagation of hydraulic fractures from a circular wellbore using the displacement discontinuity method, Int. J. Rock Mech. Min. Sci. 80, 281–291. doi: 10.1016/j.ijrmms.2015.10.004. [CrossRef] [Google Scholar]
  • Adachi J., Siebrits E., Peirce A., Desroches J. (2007) Computer simulation of hydraulic fractures, Int. J. Rock Mech. Min. Sci. 44, 5, 739–757. doi: 10.1016/j.ijrmms.2006.11.006. [CrossRef] [Google Scholar]
  • Aguilera R. (1995) Naturally fractured reservoirs, PennWell Publishing Company, Tulsa. [Google Scholar]
  • Ai C., Li X.-X., Zhang J., Jia D., Tan W.-J. (2018) Experimental investigation of propagation mechanisms and fracture morphology for coalbed methane reservoirs, Pet. Sci. 15, 4, 815–829. doi: 10.1007/s12182-018-0252-z. [CrossRef] [Google Scholar]
  • Behnia M., Goshtasbi K., Fatehi Marji M., Golshani A. (2015) Numerical simulation of interaction between hydraulic and natural fractures in discontinuous media, Acta Geotech. 10, 4, 533–546. doi: 10.1007/s11440-014-0332-1. [CrossRef] [Google Scholar]
  • Blanton T.L. (1986) Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs, SPE Unconventional Gas Technology Symposium, Society of Petroleum Engineers, Louisville, Kentucky. doi: 10.2118/15261-MS. [Google Scholar]
  • Cheng W., Jiang G., Jin Y. (2017) Numerical simulation of fracture path and nonlinear closure for simultaneous and sequential fracturing in a horizontal well, Comput. Geotech. 88, 2017, 242–255. doi: 10.1016/j.compgeo.2017.03.019. [CrossRef] [Google Scholar]
  • Cipolla C., Wallace J. (2014) Stimulated reservoir volume: A misapplied concept? SPE Hydraulic Fracturing Technology Conference, Society of Petroleum Engineers, The Woodlands, Texas, USA. doi: 10.2118/168596-MS. [Google Scholar]
  • Dahi-Taleghani A., Olson J.E. (2011) Numerical modeling of multistranded-hydraulic-fracture propagation: Accounting for the interaction between induced and natural fractures, Soc. Pet. Eng. 16, 3, 575–581. doi: 10.2118/124884-PA. [Google Scholar]
  • Dahi Taleghani A., Gonzalez-Chavez M., Yu H., Asala H. (2018) Numerical simulation of hydraulic fracture propagation in naturally fractured formations using the cohesive zone model, J. Pet. Sci. Eng. 165, 42–57. doi: 10.1016/j.petrol.2018.01.063. [CrossRef] [Google Scholar]
  • Dehghan A.N., Goshtasbi K., Ahangari K., Jin Y. (2015) Experimental investigation of hydraulic fracture propagation in fractured blocks, Bull. Eng. Geol. Environ. 74, 3, 887–895. doi: 10.1007/s10064-014-0665-x. [CrossRef] [Google Scholar]
  • Dehghan A.N., Goshtasbi K., Ahangari K., Jin Y. (2016) Mechanism of fracture initiation and propagation using a tri-axial hydraulic fracturing test system in naturally fractured reservoirs, Eur. J. Environ. Civ. Eng. 20, 5, 560–585. doi: 10.1080/19648189.2015.1056384. [CrossRef] [Google Scholar]
  • Dershowitz W.S., Herda H.H. (1992) Interpretation of fracture spacing and intensity. 33rd U.S. Symposium on Rock Mechanics (USRMS), 3–5 June, Santa Fe, New Mexico. [Google Scholar]
  • Economides M.J., Mikhailov D.N., Nikolaevskiy V.N. (2007) On the problem of fluid leakoff during hydraulic fracturing, Transp. Porous Media 67, 3, 487–499. doi: 10.1007/s11242-006-9038-7. [CrossRef] [Google Scholar]
  • Eshelby J.D. (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Royal Soc. Lond. Ser. A. Math. Phys. Sci. 241, 1226, 376–396. doi: 10.1098/rspa.1957.0133. [CrossRef] [MathSciNet] [Google Scholar]
  • Fatahi H., Hossain M., Sarmadivaleh M. (2017) Numerical and experimental investigation of the interaction of natural and propagated hydraulic fracture, J. Nat. Gas Sci. Eng. 37, 2017, 409–424. doi: 10.1016/j.jngse.2016.11.054. [CrossRef] [Google Scholar]
  • Feng Y., Arlanoglu C., Podnos E., Becker E., Gray K.E. (2015) Finite-element studies of hoop-stress enhancement for wellbore strengthening, Soc. Pet. Eng. 30, 1, 1–14. doi: 10.2118/168001-PA. [Google Scholar]
  • Filho J.S., Shakiba M., Moinfar A., Sepehrnoori K. (2015) Implementation of a preprocessor for embedded discrete fracture modeling in an impec compositional reservoir simulator, SPE Reservoir Simulation Symposium, 23–25 February, Houston, Texas, USA. doi: 10.2118/173289-MS. [Google Scholar]
  • Geertsma J., De Klerk F. (1969) A rapid method of predicting width and extent of hydraulically induced fractures, J. Pet. Technol. 21, 12, 1571–1581. [CrossRef] [Google Scholar]
  • Han Z., Zhou J., Zhang L. (2018) Influence of grain size heterogeneity and in-situ stress on the hydraulic fracturing process by PFC2D modeling, Energies 11, 6, 1413. doi: 10.3390/en11061413. [CrossRef] [Google Scholar]
  • Hoteit H., Firoozabadi A. (2006) Compositional modeling of discrete-fractured media without transfer functions by the discontinuous Galerkin and mixed methods, SPE J. 11, 3, 341–352. doi: 10.2118/90277-PA. [CrossRef] [Google Scholar]
  • Itasca Consulting Engineers Company (2016) UDEC 6 Manual. [Google Scholar]
  • Jaeger J.C., Cook N.G.W. (1979) Fundamental of rock mechanics, Chapman and Hall, London. [Google Scholar]
  • Jiang G., Cheng W. (2018) Hydraulic fracture deflection at bedding plane due to the non-orthogonal propagation and the dissimilar material properties, Arab. J. Sci. Eng. 43, 6535. doi: 10.1007/s13369-018-3291-2. [CrossRef] [Google Scholar]
  • Khristianovic S., Zheltov Y. (1955) Formation of vertical fractures by means of highly viscous fluids, in: Proceedings of the 4th World Petroleum Congress, 6–15 June, Rome, Italy, Vol. 2, pp. 579–586. [Google Scholar]
  • Kulatilake P.H.S.W., Wang S., Stephansson O. (1993) Effect of finite size joints on the deformability of jointed rock in three dimensions, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30, 5, 479–501. doi: 10.1016/0148-9062(93)92216-D. [CrossRef] [Google Scholar]
  • La Pointe P.R. (1988) A method to characterize fracture density and connectivity through fractal geometry, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25, 6, 421–429. doi: 10.1016/0148-9062(88)90982-5. [CrossRef] [Google Scholar]
  • Li X.F., Li H.B., Zhao J. (2017) 3D polycrystalline discrete element method (3PDEM) for simulation of crack initiation and propagation in granular rock, Comput. Geotech. 90, 96–112. doi: 10.1016/j.compgeo.2017.05.023. [CrossRef] [Google Scholar]
  • Li Y., Wei C., Qin G., Li M., Luo K. (2013) Numerical simulation of hydraulically induced fracture network propagation in shale formation, International Petroleum Technology Conference, 26–28 March, Beijing, China. doi: 10.2523/IPTC-16981-MS. [Google Scholar]
  • Liu C., Jin X., Shi F., Lu D., Liu H., Wu H. (2018) Numerical investigation on the critical factors in successfully creating fracture network in heterogeneous shale reservoirs, J. Nat. Gas Sci. Eng. 59, 427–439. doi: 10.1016/j.jngse.2018.09.019. [CrossRef] [Google Scholar]
  • Liu Z., Chen M., Zhang G. (2014) Analysis of the influence of a natural fracture network on hydraulic fracture propagation in carbonate formations, Rock Mech. Rock Eng. 47, 2, 575–587. doi: 10.1007/s00603-013-0414-7. [CrossRef] [Google Scholar]
  • Liu Z., Wang S., Zhao H., Wang L., Li W., Geng Y., Chen M. (2018) Effect of random natural fractures on hydraulic fracture propagation geometry in fractured carbonate rocks, Rock Mech. Rock Eng. 51, 2, 491–511. doi: 10.1007/s00603-017-1331-y. [CrossRef] [Google Scholar]
  • Lorenz J.C., Warpinski N.R., Teufel L.W. (1996) Natural fracture characteristics and effects, Lead. Edge 15, 8, 909–911. doi: 10.1190/1.1437388. [CrossRef] [Google Scholar]
  • Mighani S., Sondergeld C.H., Rai C.S. (2016) Observations of tensile fracturing of anisotropic rocks, SPE J. 21, 4, 1289–1301. doi: 10.2118/2014-1934272-PA. [CrossRef] [Google Scholar]
  • Min K.B., Jing L., Stephansson O. (2004) Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: Method and application to the field data from Sellafield, UK, Hydrogeology 12, 497–510. doi: 10.1007/s10040-004-0331-7. [CrossRef] [Google Scholar]
  • Moinfar A., Varavei A., Sepehrnoori K., Johns R.T. (2014) Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs, SPE J. 19, 2, 289–303. doi: 10.2118/154246-PA. [CrossRef] [Google Scholar]
  • Molebatsi T., Galindo Torres S., Li L., Bringemeier D., Wang X. (2009) Effect of fracture permeability on connectivity of fracture networks, International Mine Water Conference, 19th–23rd October, Pretoria, South Africa. [Google Scholar]
  • Morgan W.E., Aral M.M. (2015) Modeling hydraulic fracturing in naturally fractured reservoirs using the discontinuous deformation analysis, 49th US Rock Mechanics/Geomechanics Symposium, 28 June–1 July, San Francisco, USA. [Google Scholar]
  • Mousavi Nezhad M., Fisher Q.J., Gironacci E., Rezania M. (2018) Experimental study and numerical modeling of fracture propagation in shale rocks during Brazilian disk test, Rock Mech. Rock Eng. 51, 6, 1755–1775. doi: 10.1007/s00603-018-1429-x. [CrossRef] [Google Scholar]
  • Namdari S., Baghbanan A., Habibi M.J. (2016) Effects of matrix permeability and fracture density on flow pattern in dual porous rock masses, EUROCK, 29–31 August, Cappadocia, Turkey. [Google Scholar]
  • Nordgren R.P. (1972) Propagation of a vertical hydraulic fracture, Soc. Pet. Eng. J. 12, 4, 306–314. [CrossRef] [Google Scholar]
  • Perkins T.K., Kern L.R. (1961) Widths of hydraulic fractures, J. Pet. Technol. 13, 9, 937–949. [CrossRef] [Google Scholar]
  • Renshaw C.E., Pollard D.D. (1995) An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32, 3, 237–249. doi: 10.1016/0148-9062(94)00037-4. [CrossRef] [Google Scholar]
  • Sarmadivaleh M. (2012) Experimental and numerical study of interaction of a pre-existing natural interface and an induced hydraulic fracture, PhD Thesis, Curtin University, Australia. [Google Scholar]
  • Sarmadivaleh M., Rasouli V. (2014) Modified Renshaw and Pollard criteria for a non-orthogonal cohesive natural interface intersected by an induced fracture, Rock Mech. Rock Eng. 47, 6, 2107–2115. doi: 10.1007/s00603-013-0509-1. [CrossRef] [Google Scholar]
  • Sarmadivaleh M., Rasouli V. (2015) Test design and sample preparation procedure for experimental investigation of hydraulic fracturing interaction modes, Rock Mech. Rock Eng. 48, 1, 93–105. doi: 10.1007/s00603-013-0543-z. [CrossRef] [Google Scholar]
  • Tang J., Wu K., Li Y., Hu X., Liu Q., Ehlig-Economides C. (2018) Numerical investigation of the interactions between hydraulic fracture and bedding planes with non-orthogonal approach angle, Eng. Fract. Mech. 200, 1–16. doi: 10.1016/j.engfracmech.2018.07.010. [CrossRef] [Google Scholar]
  • Teufel L.W., Clark J.A. (1984) Hydraulic fracture propagation in layered rock: Experimental studies of fracture containment, Soc. Pet. Eng. J. 24, 1, 19–32. doi: 10.2118/9878-PA. [CrossRef] [Google Scholar]
  • Turcotte L.D. (1997) Fractals and chaos in geology and geophysics, Vol. 131, Cambridge University Press, Cambridge. [CrossRef] [Google Scholar]
  • Vu M.N., Nguyen S.T., Vu M.H. (2015) Modeling of fluid flow through fractured porous media by a single boundary integral equation, Eng. Anal. Bound. Elem. 59, 166–171. [CrossRef] [Google Scholar]
  • Walsh J.B. (1965) The effect of cracks on the uniaxial elastic compression of rocks, J. Geophys. Res. 70, 2, 399–411. doi: 10.1029/JZ070i002p00399. [CrossRef] [Google Scholar]
  • Wang B., Zhou F., Wang D., Liang T., Yuan L., Hu J. (2018b) Numerical simulation on near-wellbore temporary plugging and diverting during refracturing using XFEM-Based CZM, J. Nat. Gas Sci. Eng. 55, 368–381. doi: 10.1016/j.jngse.2018.05.009. [CrossRef] [Google Scholar]
  • Wang X.L., Shi F., Liu C., Lu D.T., Liu H., Wu H.A. (2018a) Extended finite element simulation of fracture network propagation in formation containing frictional and cemented natural fractures, J. Nat. Gas Sci. Eng. 50, 309–324. doi: 10.1016/j.jngse.2017.12.013. [CrossRef] [Google Scholar]
  • Wang Y., Li C.H. (2017) Investigation of the effect of cemented fractures on fracturing network propagation in model block with discrete orthogonal fractures, Rock Mech. Rock Eng. 50, 1851–1862. doi: 10.1007/s00603-017-1198-y. [CrossRef] [Google Scholar]
  • Warpinski N.R., Teufel L.W. (1987) Influence of geologic discontinuities on hydraulic fracture propagation (includes associated papers 17011 and 17074), J. Pet. Technol. 39, 2, 209–220. doi: 10.2118/13224-PA. [CrossRef] [Google Scholar]
  • Wu K., Olson J.E. (2015) Numerical investigation of complex hydraulic fracture development in naturally fractured reservoirs, SPE Hydraulic Fracturing Technology Conference, 3–5 February, The Woodlands, Texas, USA. doi: 10.2118/173326-MS. [Google Scholar]
  • Xu S., Tang X., Torres-Verdín C., Su Y. (2018) Seismic shear wave anisotropy in cracked rocks and an application to hydraulic fracturing, Geophys. Res. Lett. 45, 11, 5390–5397. doi: 10.1029/2018GL077931. [CrossRef] [Google Scholar]
  • Zangeneh N., Eberhardt E., Bustin R.M. (2015) Investigation of the influence of natural fractures and in situ stress on hydraulic fracture propagation using a distinct-element approach, Can. Geotech. J. 52, 926–946. doi: 10.1139/cgj-2013-0366. [CrossRef] [Google Scholar]
  • Zhang B., Ji B., Liu W. (2018a) The study on mechanics of hydraulic fracture propagation direction in shale and numerical simulation, Geomech. Geophys. Geo-energy Geo-Resour. 4, 2, 119–127. doi: 10.1007/s40948-017-0077-z. [CrossRef] [Google Scholar]
  • Zhang L., Zhou J., Braun A., Han Z. (2018b) Sensitivity analysis on the interaction between hydraulic and natural fractures based on an explicitly coupled hydro-geomechanical model in PFC2D, J. Pet. Sci. Eng. 167, 638–653. doi: 10.1016/j.petrol.2018.04.046. [CrossRef] [Google Scholar]
  • Zhang X., Jeffrey R.G. (2012) Fluid-driven multiple fracture growth from a permeable bedding plane intersected by an ascending hydraulic fracture, J. Geophys. Res. 117, B12402. doi: 10.1029/2012JB009609. [Google Scholar]
  • Zhou J., Jin Y., Chen M. (2010) Experimental investigation of hydraulic fracturing in random naturally fractured blocks, Int. J. Rock Mech. Min. Sci. 47, 7, 1193–1199. doi: 10.1016/j.ijrmms.2010.07.005. [CrossRef] [Google Scholar]
  • Zhou J., Zhang L., Pan Z., Han Z. (2017) Numerical studies of interactions between hydraulic and natural fractures by Smooth Joint Model, J. Nat. Gas Sci. Eng. 46, 592–602. doi: 10.1016/j.jngse.2017.07.030. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.