Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 37
Number of page(s) 11
DOI https://doi.org/10.2516/ogst/2019011
Published online 05 April 2019
  • Liu H., Wan X. (1995) Development adjustment of heterogeneous sandstone reservoir at late period of high water cut stage, Proceedings of SPE International Meeting on Petroleum Engineering, November 14–17, Beijing, China. SPE Paper No. 29949. [Google Scholar]
  • Mi L., Jiang H., Pei Y., Li J., Tian J., Xin Y., Killough J.E. (2016) Microscopic oil and water percolation characteristic investigation of water flood reservoir in ultrahigh water cut period, Proceedings of SPE Trinidad and Tobago Section Energy Resources Conference, June 13–15, Port of Spain. SPE Paper No. 180864. [Google Scholar]
  • Pu J., Zhou J., Chen Y., Bai B. (2017) Development of thermotransformable controlled hydrogel for enhancing oil recovery, Energy Fuels 31, 12, 13600–13609. [CrossRef] [Google Scholar]
  • Xiaoping Z., Guoda Y., Yanping L., Yingshi H., Tran T., Castellan F., Yang L. (2013) Best practices and application of integrated fit for purpose technologies to revitalise high water cut mature fields – A case history from offshore South China, Proceedings of SPE International Petroleum Technology Conference, March 26–28, Beijing, China, SPE Paper No. 16662. [Google Scholar]
  • Zhao Y., Jiang H., Li J., Wang C., Gao Y., Yu F., Su H. (2017) Study on the classification and formation mechanism of microscopic remaining oil in high water cut stage based on machine learning, Proceedings of SPE Abu Dhabi International Petroleum Exhibition & Conference, November 13–16, Abu Dhabi. SPE Paper No. 188228. [Google Scholar]
  • Hill F., Monroe S., Mohanan R. (2012) Water management—An increasing trend in the oil and gas industry, Proceedings of SPE/EAGE European unconventional resources conference and exhibition, March 20–22, Vienna, Austria. SPE Paper No. 154720 [Google Scholar]
  • Seright R.S., Lane R.H., Sydansk R.D. (2001) A strategy for attacking excess water production, Proceedings of SPE Permian Basin Oil and Gas Recovery Conference, May 15–17, Midland, Texas. SPE Paper No. 70067. [Google Scholar]
  • Henaut I., Pasquier D., Rovinetti S., Espagne B. (2015) HP-HT drilling mud based on environmently-friendly fluorinated chemicals, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 70, 6, 917–930. [CrossRef] [Google Scholar]
  • Zhou M., Bu J., Wang J., Guo X., Huang J., Huang M. (2018) Study on three phase foam for enhanced oil recovery in extra-low permeability reservoirs, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 55. doi: 10.2516/ogst/2018059. [CrossRef] [Google Scholar]
  • Bai B., Zhou J., Yin M. (2015) A comprehensive review of polyacrylamide polymer gels for conformance control, Petrol. Explor. Develop. 42, 4, 525–532. [CrossRef] [Google Scholar]
  • Chen L.F., Zhang G.C., Ge J.J., Jiang P., Zhu X.M., Ran Y.L., Liu D.X. (2015) Mechanism of sodium tripolyphosphate inhibiting the syneresis of HPAM hydrogel, RSC Adv. 5, 103, 84872–84878. [CrossRef] [Google Scholar]
  • Jia H., Zhao J.Z., Jin F.Y., Pu W.F., Li Y.M., Li K.X., Li J.M. (2012) New insights into the gelation behavior of polyethyleneimine cross-linking partially hydrolyzed polyacrylamide gels, Ind. Eng. Chem. Res. 51, 38, 12155–12166. [CrossRef] [Google Scholar]
  • Vargas-Vasquez S.M., Romero-Zeron L.B., Macgregor R., Gopalakrishnan S. (2007) Monitoring the cross-linking of a HPAm/Cr(III) acetate polymer gel using H-1 NMR, UV spectrophotometry, bottle testing, and rheology, Int. J. Polym. Anal. Charact. 12, 5, 339–357. [CrossRef] [Google Scholar]
  • Wang Z.B., Zhao X.T., Bai Y.R., Gao Y. (2016) Study of a double cross-linked HPAM gel for in-depth profile control, J. Dispers. Sci. Technol. 37, 7, 1010–1018. [CrossRef] [Google Scholar]
  • Rostami A., Kalantari-Meybodi M., Karimi M., Tatar A., Mohammadi A.H. (2018) Efficient estimation of hydrolyzed polyacrylamide (HPAM) solution viscosity for enhanced oil recovery process by polymer flooding, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 22. doi: 10.2516/ogst/2018006. [Google Scholar]
  • Al-Assi A.A., Willhite G.P., Green D.W., McCool C.S. (2006) Formation and propagation of gel aggregates using partially hydrolyzed polyacrylamide and aluminum citrate, Proceedings of SPE Symposium on Improved Oil Recovery, April 22–26, Tulsa, Oklahoma, USA. SPE Paper No. 100049. [Google Scholar]
  • Ghazali H.A., Willhite, G.P. (1985) Permeability modification using aluminum citrate/polymer treatments: Mechanisms of permeability reduction in sandpacks, Proceedings of SPE Oilfield and Geothermal Chemistry Symposium, March 9–11, Phoenix, Arizona. SPE Paper No. 13583. [Google Scholar]
  • King W.A. (1990) Waterflooding the Minnelusa with aluminum citrate gelled polymer, Powder River basin, Wyoming, Proceedings of SPE Enhanced Oil Recovery Symposium, April 22–25, Tulsa, Oklahoma. SPE Paper No. 20287. [Google Scholar]
  • Ranganathan R., Lewis R., McCool C.S., Green D.W., Willhite G.P. (1997) An experimental study of the in situ gelation behavior of a polyacrylamide/aluminum citrate “colloidal dispersion” gel in a porous medium and its aggregate growth during gelation reaction, Proceedings of SPE International Symposium on Oilfield Chemistry, February 18–21, Houston, Texas. SPE Paper No. 37220. [Google Scholar]
  • Ranganathan R., Lewis R., McCool C.S., Green D.W., Willhite G.P. (1997) Experimental study of the gelation behavior of a polyacrylamide/aluminum citrate colloidal-dispersion gel system, Proceedings of SPE International Symposium on Oilfield Chemistry, February 18-21, Houston, TX. SPE Paper No. 37220. [Google Scholar]
  • Pu J., Geng J., Bai B. (2018) Effect of the chromium ion diffusion in polyacrylamide/chromium acetate gelation system with surrounding water on gelation behavior, J. Petrol. Sci. Eng. 171, 1067–1076. [CrossRef] [Google Scholar]
  • Al-Muntasheri G.A. (2012) Conformance control with polymer gels: What it takes to be successful, Arab. J. Sci. Eng. 37, 4, 1131–1141. [CrossRef] [Google Scholar]
  • Zhang X., Huang R., Xu X. (2001) Studies on morphological structure and gelling behavior of partially hydrolyzed polyacrylamide-aluminium citrate system, Acta Polym. Sin. 1, 8–12. [Google Scholar]
  • Wang W., Lu X. (2009) Molecular configuration and flow performance of Al3+ cross-linked polymer, Petrol. Sci. Technol. 27, 7, 699–711. [CrossRef] [Google Scholar]
  • Kedir A.S., Seland J.G., Skauge A., Skauge T. (2014) Nanoparticles for enhanced oil recovery: Phase transition of aluminum-cross-linked partially hydrolyzed polyacrylamide under low-salinity conditions by rheology and nuclear magnetic resonance, Energy Fuels 28, 5, 2948–2958. [CrossRef] [Google Scholar]
  • Kedir A.S., Seland J.G., Skauge A., Skauge T. (2016) Re-entrant transition of aluminum-crosslinked partially hydrolyzed polyacrylamide in a high salinity solvent by rheology and NMR, J. Appl. Polym. Sci. 133, 33, 43825. doi: 10.1002/app.43825. [Google Scholar]
  • Al-Assi A.A., Willhite G.P., Green D.W., McCool C.S. (2009) Formation and propagation of gel aggregates using partially hydrolyzed polyacrylamide and aluminum citrate, SPE J. 14, 3, 450–461. [CrossRef] [Google Scholar]
  • Ye Z., He E., Xie S., Han L., Chen H., Luo P., Lai N. (2010) The mechanism study of disproportionate permeability reduction by hydrophobically associating water-soluble polymer gel, J. Petrol. Sci. Eng. 72, 1–2, 64–66. [CrossRef] [Google Scholar]
  • Jia H., Pu W.F., Zhao J.Z., Liao R. (2011) Experimental investigation of the novel phenol− formaldehyde cross-linking HPAM gel system: Based on the secondary cross-linking method of organic cross-linkers and its gelation performance study after flowing through porous media, Energy Fuels 25, 2, 727–736. [CrossRef] [Google Scholar]
  • Jia H., Zhao J.Z., Jin F.Y., Pu W.F., Li Y.M., Li K.X., Li J.M. (2012) New insights into the gelation behavior of polyethyleneimine cross-linking partially hydrolyzed polyacrylamide gels, Ind. Eng. Chem. Res. 51, 38, 12155–12166. [CrossRef] [Google Scholar]
  • Aquino A.J., Tunega D., Haberhauer G., Gerzabek M.H., Lischka H. (2001) A density-functional investigation of aluminium (III)–citrate complexes, Phys. Chem. Chem. Phys. 3, 11, 1979–1985. [CrossRef] [Google Scholar]
  • Kedir A.S., Seland J.G., Skauge A., Skauge T. (2014) Nanoparticles for enhanced oil recovery: Influence of pH on aluminum-cross-linked partially hydrolyzed polyacrylamide-investigation by rheology and NMR, Energy Fuels 28, 4, 2343–2351. [CrossRef] [Google Scholar]
  • Lin M.Q., Dong Z.X., Li M.Y., Wu Z.L. (2007) Al-27 NMR studies on HPAM/AlCit crosslinking system with low concentration polymer, Chem. J. Chin. Univ. 28, 8, 1573–1576. (in Chinese). [Google Scholar]
  • Lin M.Q., Dong Z.X., Song J.H., Tang Y.L., Li M.Y., Wu Z.L. (2003) The study of the critical crosslinking concentration for HPAM/AlCit system, Acta Polym. Sin. 6, 816–820. [Google Scholar]
  • Lin M.Q., Sun A.J., Dong Z.X., Tang Y.L., Li M.Y., Wu Z.L. (2004) Study on properties of the linked polymer solution with low polymer concentration, Acta Phys.-Chim. Sin. 20, 3, 285–289. [Google Scholar]
  • de Noronha A.L.O., Guimaraes L., Duarte H.A. (2007) Structural and thermodynamic analysis of the first mononuclear aqueous aluminum citrate complex using DFT calculations, J. Chem. Theory Comput. 3, 3, 930–937. [CrossRef] [Google Scholar]
  • Mumallah N.A. (1988) Chromium (III) Propionate: A crosslinking agent for water-soluble polymers in hard oilfield brines, SPE Reserv. Eng. 3, 1, 243–250. [CrossRef] [Google Scholar]
  • Feng T.L., Gurian P.L., Healy M.D., Barron A.R. (1990) Aluminum citrate: Isolation and structural characterization of a stable trinuclear complex, Inorg. Chem. 29, 3, 408–411. [CrossRef] [Google Scholar]
  • Happel O., Seubert A. (2006) Characterization of stable aluminium-citrate species as reference substances for aluminium speciation by ion chromatography, J. Chromatogr. A 1108, 1, 68–75. [CrossRef] [PubMed] [Google Scholar]
  • Spildo K., Skauge A., Skauge T. (2010) Propagation of colloidal dispersion gels (CDG) in laboratory corefloods, Proceedings of SPE Improved Oil Recovery Symposium, April 24–28, Tulsa, Oklahoma, USA. SPE Paper No. 129927. [Google Scholar]
  • Shriwal P., Lane R.H. (2012) Impacts of timing of crosslinker addition on water shutoff polymer gel properties, Proceedings of SPE improved oil recovery symposium, April 14–18, Tulsa, Oklahoma, USA. SPE Paper No. 153241. [Google Scholar]
  • Zhang L., Pu C., Sang H., Zhao Q. (2015) Mechanism study of the cross-linking reaction of hydrolyzed polyacrylamide/Ac3Cr in formation water, Energy Fuels 29, 8, 4701–4710. [CrossRef] [Google Scholar]
  • Mack J.C., Smith J.E., (1994) In-depth colloidal dispersion gels improve oil recovery efficiency, Proceedings of SPE International Symposium on Improved on Recovery, April 17–20, Tulsa, Oklahoma. SPE Paper No. 27780. [Google Scholar]
  • Sikora F.J., McBride M.B. (1989) Aluminum complexation by catechol as determined by ultraviolet spectrophotometry, Environ. Sci. Technol. 23, 3, 349–356. [CrossRef] [Google Scholar]
  • Sikora F.J., McBride M.B. (1990) Aluminum complexation by protocatechuic and caffeic acids as determined by ultraviolet spectrophotometry, Soil Sci. Soc. Am. J. 54, 1, 78–86. [CrossRef] [Google Scholar]
  • Wang W., Lu X.G., Xie, X. (2008) Evaluation of intra-molecular crosslinked polymers, Proceedings of SPE Western Regional and Pacific Section AAPG Joint Meeting, March 29−April 4, Bakersfield, California. SPE Paper No. 113760. [Google Scholar]
  • Zhang L., Zheng L., Pu J., Pu C., Cui S. (2016) Influence of hydrolyzed polyacrylamide (HPAM) molecular weight on the cross-linking reaction of the HPAM/Cr3+ system and transportation of the HPAM/Cr3+ system in microfractures, Energy Fuels 30, 11, 9351–9361. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.