Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 34
Number of page(s) 16
DOI https://doi.org/10.2516/ogst/2018099
Published online 01 April 2019
  • Algapani D.E., Qiao W., Su M., di Pumpo F., Wandera S.M., Adani F., Dong R. (2016) Bio-hydrolysis and bio-hydrogen production from food waste by thermophilic and hyper thermophilic anaerobic process, Bioresour. Technol. 216, 768–777. [Google Scholar]
  • Chandolias K., Pardaev S., Taherzadeh M.J. (2016) Bio hydrogen and carboxylic acids production from wheat straw hydrolysate, Bioresour. Technol. 216, 1093–1097. [Google Scholar]
  • Jariyaboon R., O-Thong S., Kongjan P. (2015) Bio-hydrogen and bio-methane potentials of skim latex serum in batch thermophilic two-stage anaerobic digestion, Bioresour. Technol. 198, 198–206. [Google Scholar]
  • Kumar G., Bakonyi P., Periyasamy S., Kim S.H., Nemestóthy N., Bélafi-Bakó K. (2015a) Lignocellulose bio hydrogen: practical challenges and recent progress, Renew. Sust. Energ. Rev. 44, 728–737. [CrossRef] [Google Scholar]
  • Pachapur V.L., Sarma S.J., Brar S.K., Le Bihan Y., Buelna G., Verma M. (2015) Bio hydrogen production by co-fermentation of crude glycerol and apple pomace hydrolysate using co-culture of Enterobacter aerogenes and Clostridium butyricum, Bioresour. Technol. 193, 297–306. [Google Scholar]
  • Kumar G., Mudhoo A., Sivagurunathan P., Nagarajan D., Ghimire A., Lay C.H., Lin C.Y., Lee D.J., Chang J.S. (2016) Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production, Bioresour. Technol. 219, 725–737. [Google Scholar]
  • Marbán G., Valdés-Solís T. (2007) Towards the hydrogen economy?, Int. J. Hydrogen Energy 32, 1625–1637. [Google Scholar]
  • Kotay S.M., Das D. (2008) Bio hydrogen as a renewable energy resource – prospects and potentials, Int. J. Hydrogen Energy 33, 258–263. [Google Scholar]
  • Kothari R., Singh D.P., Tyagi V.V., Tyagi S.K. (2012) Fermentative hydrogen production – an alternative clean energy source, Renew. Sustain. Energy. Rev. 16, 2337–2346. [CrossRef] [Google Scholar]
  • Alves H.J., Bley Junior C., Niklevicz R.R., Frigo E.P., Frigo M.S., Coimbra-Araújo C.H. (2013) Overview of hydrogen production technologies from biogas and the applications in fuel cells, Int. J. Hydrogen Energy 38, 5215–5525. [Google Scholar]
  • Ekins P., Hughes N. (2009) The prospects for a hydrogen economy (1): hydrogen futures, Technol. Anal. Strateg. Manage. 21, 783–803. [CrossRef] [Google Scholar]
  • Das D., Veziroglu T. (2008) Advances in biological hydrogen production processes, Int. J. Hydrogen Energy 33, 6046–6057. [Google Scholar]
  • Li C., Fang H.H.P. (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures, Crit. Rev. Environ. Sci. Technol. 37, 1–39. [Google Scholar]
  • Ghimire A., Frunzo L., Pirozzi F., Trably E., Escudie R., Lens P.N.L., Esposito G. (2015) A review on dark fermentative bio hydrogen production from organic biomass: process parameters and use of by-products, Applied Energy 144, 73–95. [Google Scholar]
  • Sinha P., Pandey A. (2011) An evaluative report and challenges for fermentative bio hydrogen production, Int. J. Hydrogen Energy 36, 7460–7478. [Google Scholar]
  • Das D. (2009) Advances in bio hydrogen production process: an approach towards commercialization, Int. J. Hydrogen Energy 34, 7349–7457. [Google Scholar]
  • Suzuki Y. (1982) On hydrogen as fuel gas, Int. J. Hydrogen Energy 7, 227–230. [Google Scholar]
  • Nath K., Das D. (2003) Hydrogen from biomass, Curr. Sci. 85, 265–271. [Google Scholar]
  • Boyles D. (1984) Bioenergy technology – thermodynamics and costs, Wiley, New York. [Google Scholar]
  • Benemann J.R. (1996) Hydrogen biotechnology: progress and prospects, Nat. Biotechnol. 14, 1101–1103. [CrossRef] [PubMed] [Google Scholar]
  • Momirlan M., Veziroglu T.N. (2002) Current status of hydrogen energy, Renew. Sustain. Energy Rev. 6, 141–179. [CrossRef] [Google Scholar]
  • Das D., Veziroglu T.N. (2001) Hydrogen production by biological processes: a survey of literature, Int. J. Hydrogen Energy 26, 13–28. [Google Scholar]
  • Nandi R., Sengupta S. (1998) Microbial production of hydrogen: an overview, Crit. Rev. Microbiol. 24, 61–84. [CrossRef] [PubMed] [Google Scholar]
  • Arimi M.M., Knodel J., Kiprop A., Namango S.S., Zhang Y., Geißen S.U. (2015) Strategies for improvement of bio hydrogen production from organic-rich wastewater: A review, Biomass Bioenergy 75, 101–118. [Google Scholar]
  • Hallenbeck P.C., Benemann J.R. (2002) Biological hydrogen production: fundamentals and limiting processes, Int. J. Hydrogen Energy 27, 1185–1193. [Google Scholar]
  • Benemann J.R. (2000) Hydrogen production by microalgae, J. Appl. Phycol. 12, 3–5, 291–300. [Google Scholar]
  • Han H., Liu B., Yang H., Shen J. (2012) Effect of carbon sources on the photo biological production of hydrogen using Rhodobacter sphaeroides RV, Int. J. Hydrogen Energy 37, 17, 12167–12174. [Google Scholar]
  • Ren N., Li J., Li B., Wang Y., Liu S. (2006) Bio hydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system, Int. J. Hydrogen Energy 31, 15, 2147–2157. [Google Scholar]
  • Chen C.Y., Yang M.H., Yeh K.L., Liu C.H., Chang J.S. (2008) Bio hydrogen production using sequential two-stage dark and photo fermentation processes, Int. J. Hydrogen Energy 33, 18, 4755–4762. [Google Scholar]
  • Hallenbeck P.C., Kochian K.V., Weissman J.C., Benemann J.R. (1978) Solar energy conversion with hydrogen producing cultures of the blue-green alga, Anabaena cylindrical, Biotechnol. Bioeng. Symp. 8, 283–297. [Google Scholar]
  • Miyamoto K., Hallenbeck P.C., Benemann J.R. (1979) Solar energy conversion by nitrogen limited cultures of Anabaena cylindrical, J. Ferment. Technol. 57, 287–293. [Google Scholar]
  • Ghirardi M.L., Zhang L., Lee J.W., Flynn T., Seibert M., Greenbaum E., et al. (2000) Microalgae: a green source of renewable H2, Trends Biotechnol. 18, 506–511. [Google Scholar]
  • Azwar M.Y., Hussain M.A., Abdul-Wahab A.K. (2014) Development of bio hydrogen production by photo biological, fermentation and electrochemical processes: a review, Renew. Sust. Energ. Rev. 31, 158–173. [CrossRef] [Google Scholar]
  • Maness P.C., Yu J., Eckert C., Ghirardi M.L. (2009) Photo biological hydrogen production – prospects and challenges, Microbe 4, 6, 275–280. [Google Scholar]
  • Akkerman I., Janssen M., Rocha J.M.S., Reith J.H., Wijffels R.H. (2003) Photo biological hydrogen production: photochemical efficiency and bioreactor design, Dutch Biological Hydrogen Foundation, Pet-ten, The Netherlands, pp. 124–145. [Google Scholar]
  • Ohta S., Miyamoto K., Miura Y. (1987) Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation, J. Plant. Physiol. 83, 1022–1026. [Google Scholar]
  • Laurinavichene T.V., Fedorov A.S., Ghirardi M.L., Seibert M., Tsygankov A.A. (2006) Demonstration of sustained hydrogen photo production by immobilized, sulphur-deprived Chlamydomonas reinhardtii cells, Int. J. Hydrogen Energy 31, 659–667. [Google Scholar]
  • Guan Y.F., Deng M.C., Yu X.J., Zhang W. (2004) Two-stage photo biological production of hydrogen by marine green alga Platymonas subcordiformis, Biochem. Eng. J. 19, 69–73. [Google Scholar]
  • Fouchard S., Hemschemeier A., Caruana A., Pruvost J., Legrand J., Happe T. (2005) Autotrophic and mixotrophic hydrogen photo production in sulphur-deprived Chlamydomonas cells, Appl. Environ. Microbiol. 71, 6199–6205. [Google Scholar]
  • Chader S., Haceneb H., Agathos S.N. (2009) Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara, Int. J. Hydrogen Energy 34, 4941–4946. [Google Scholar]
  • Tamburic B., Zemichael F.W., Maitland G.C., Hellgardt K. (2010) Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii, Int. J. Hydrogen Energy 35, 1–5. [Google Scholar]
  • Berberoglu H., Jenny J., Laurent P. (2008) Effect of nutrient media on photo biological hydrogen production by Anabaena variabilis ATCC 29413, Int. J. Hydrogen Energy 33, 1172–1184. [Google Scholar]
  • Tsygankov A.A., Hall D.O., Liu J., Rao K. (1998) An automated helical photo bioreactor incorporating cyanobacteria for continuous hydrogen production, in: Bio hydrogen, Zaborsky O.R. (ed),Plenum Press, London, pp. 431–440. [Google Scholar]
  • Serebryakova L.T., Sheremetieva M.E., Lindblad P. (2000) H2-uptake and evolution in the unicellular cyanobacteria Chroococcidiopsis thermalis CALU 758, Plant Physiol. Biochem. 38, 525–530. [Google Scholar]
  • Lindblad P., Chirstensson K., Lindberg P., Fedorov A., Pinto F., Tsygankov A. (2002) Photo production of H2 by wild type Anabaena PCC 1720 and a hydrogen uptake deficient mutant: from laboratory to outdoor culture, Int. J. Hydrogen Energy 27, 1271–1282. [Google Scholar]
  • Asami K., Fujioka M., Yamamoto T., Ohtaguchi K. (2011) Production of hydrogen by thermophilic Cyanobacteria Synechococcus sp. strain H-1, J. Chem. Eng. Jpn. 44, 37–43. [CrossRef] [Google Scholar]
  • Raksajit W., Satchasataporn K., Lehto K., Maenpaa P., Incharoensakdi A. (2012) Enhancement of hydrogen production by the filamentous non-heterocystous cyanobacterium Arthrospira sp. PCC 8005, Int. J. Hydrogen Energy 37, 18791–18797. [Google Scholar]
  • Adams M.W.W., Stiefel E.I. (1998) Biological hydrogen production: not so elementary, Science 1842–1843. [Google Scholar]
  • Frey M. (2002) Hydrogenases: hydrogen-activating enzymes, Chem. Bio. Chem. 3, 153–160. [CrossRef] [Google Scholar]
  • Vignais P.M., Billoud B., Meyer J. (2001) Classification and phylogeny of hydrogenases, FEMS Microbiol. Rev. 25, 455–501. [CrossRef] [PubMed] [Google Scholar]
  • Hallenbeck P.C., Ghosh D. (2009) Advances in fermentative bio hydrogen production: the way forward, Trends Biotechnol. 27, 5, 287–297. [CrossRef] [PubMed] [Google Scholar]
  • Wykoff D.D., Davies J.P., Melis A., Grossman A.R. (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii, Plant Physiol. 117, 129–139. [Google Scholar]
  • Akkerman I., Janssen M., Rocha J.M.S., Reith J.H., Wijffels R.H. (2002) Photo biological hydrogen production: photochemical efficiency and bioreactor design, Int. J. Hydrogen Energy 27, 1195–1208. [Google Scholar]
  • Gaudernack B. (1998) Photo production of hydrogen: Annex 10 of the IEA Hydrogen Program, in: Proceedings of the 12th WHEC, hydrogen energy progress XII vol 3, 2011–2023. [Google Scholar]
  • Stal L.J., Krumbein W.E. (1985) Oxygen protection of nitrogenase in the aerobically nitrogen fixing, non-heterocystous Cyanobacterium Oscillatoria sp, Arch. Microbiol. 143, 72–76. [Google Scholar]
  • Stal L.J., Krumbein W.E. (1987) Temporal separation of nitrogen fixation and photosynthesis in the filamentous, non-heterocystous cyanobacterium Oscillatoria sp, Arch. Microbiol. 149, 76–80. [Google Scholar]
  • Brentner L.B., Peccia J., Zimmerman J.B. (2010) Challenges in developing bio hydrogen as a sustainable energy source: implications for a research agenda, Environ. Sci. Technol. 44, 2243–2254. [CrossRef] [PubMed] [Google Scholar]
  • Akroum-Amrouche D., Abdi N., Lounici H., Mameri N. (2011) Effect of physico-chemical parameters on bio hydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6, Appl. Energy 88, 6, 2130–2135. [Google Scholar]
  • Basak N., Das D. (2009) Photo fermentative hydrogen production using purple non-sulfur bacteria; Rhodobacter sphaeroides-OU 001 in an annular photo bioreactor: a case study, Biomass Bioenergy 33, 6, 911–919. [Google Scholar]
  • Hawkes F.R., Dinsdale R., Hawkes D.L., Hussy I. (2002) Sustainable fermentative bio hydrogen: challenges for process optimization, Int. J. Hydrogen Energy 27, 1339–1347. [Google Scholar]
  • Dabrock B., Bahl H., Gottschalk G. (1992) Parameters affecting solvent production by Clostridium pasteurianum, Appl. Environ. Microbiol. 58, 1233–1239. [Google Scholar]
  • Afsar N., Ozgur E., Gurgan M., Akko S., Yucel M., Gunduz U., Eroglu I. (2011) Int. J. Hydrogen Energy 36, 432. [Google Scholar]
  • Perera K.R.J., Ketheesan B., Gadhamshetty V., Nirmalakhandan N. (2010) Int. J. Hydrogen Energy 35, 12224. [Google Scholar]
  • Claassen P.A.M., de Vrije T. (2006) Int. J. Hydrogen Energy 31, 1416. [Google Scholar]
  • Singh L., Wahid Z.A. (2015) Methods for enhancing bio-hydrogen production from biological process: a review, J. Ind. Eng. Chem. 21, 70–80. [Google Scholar]
  • Redwood M.D., Macaskie L.E., Beedle M.P. (2009) Rev. Environ. Sci. Biotechnology 8, 149. [CrossRef] [Google Scholar]
  • Cheng J., Su H.B., Zhou J.H., Song W.L., Cen K.F. (2011) Int. J. Hydrogen Energy 36, 450. [Google Scholar]
  • Su H.B., Cheng J., Zhou J.H., Song W.L., Cen K.F. (2009) Int. J. Hydrogen Energy 34, 1780. [Google Scholar]
  • Argun H., Kargi F. (2010) Int. J. Hydrogen Energy 35, 1595. [CrossRef] [Google Scholar]
  • Lo Y.C., Chen C.Y., Lee C.M., Chang J.S. (2010) Int. J. Hydrogen Energy 35, 10944. [CrossRef] [Google Scholar]
  • Lo Y.C., Chen S.D., Chen C.Y., Huang T.I., Lin C.Y., Chang J.S. (2008) Int. J. Hydrogen Energy 33, 5224. [CrossRef] [Google Scholar]
  • Ozgur E., Mars A.E., Peksel B., Louwerse A., Yucel M., Gunduz U., Claassen P.A.M., Eroglu I. (2010) Int. J. Hydrogen Energy 35, 511. [CrossRef] [Google Scholar]
  • Chen C.Y., Yang M.H., Yeh K.L., Liu C.H., Chang J.S. (2008) Int. J. Hydrogen Energy 33, 4755. [CrossRef] [Google Scholar]
  • Tao Y., He Y., Wu Y., Liu F., Li X., Zong W., Zhou Z. (2008) Int. J. Hydrogen Energy 33, 963. [CrossRef] [Google Scholar]
  • Ren N.Q., Wang A.J., Cao G.L., Xu J.F., Gao L.F. (2009) Biotechnol. Adv. 27, 1051. [CrossRef] [PubMed] [Google Scholar]
  • Kapdan I.K., Kargi F. (2006) Enzyme Microb. Technol. 38, 271. [CrossRef] [Google Scholar]
  • Sigal A., Leiva E.P.M., Rodriguez C.R. (2014) Int. J. Hydrogen Energy 39, 8204. [CrossRef] [Google Scholar]
  • Manish S., Banerjee R. (2008) Int. J. Hydrogen Energy 33, 279. [CrossRef] [Google Scholar]
  • Ni M., Leung D.Y.C., Leung M.K.H., Sumathy K. (2006) Fuel Process. Technol. 87, 461. [CrossRef] [Google Scholar]
  • Liu B.F., Ren N.Q., Tang J., Ding J., Liu W.Z., Xu J.F., Cao G.L., Guo W.Q., Xie G.J. (2010) Int. J. Hydrogen Energy 35, 2858. [CrossRef] [Google Scholar]
  • Liu B.F., Ren N.Q., Xie G.J., Ding J., Guo W.Q., Xing D.F. (2010) Bioresour. Technol. 101, 5325. [CrossRef] [Google Scholar]
  • Miyake J., Mao X.Y., Kawamura S., Ferment J. (1984) J. Ferment. Technol. 62, 531. [Google Scholar]
  • Fang H.H.P., Zhu H., Zhang T. (2006) Int. J. Hydrogen Energy 31, 2223. [CrossRef] [Google Scholar]
  • Yokoi H., Mori S., Hirose S., Takasoki Y., Takasoki T. (1998) Biotechnol. Lett. 20, 895. [CrossRef] [Google Scholar]
  • Xie G.J., Feng L.B., Ren N.Q., Ding J., Liu C., Xing D.F., Qian G.W., Ren H.Y. (2010) Int. J. Hydrogen Energy 35, 1929. [CrossRef] [Google Scholar]
  • Ding J., Liu B.F., Ren N.Q., Xing D.F., Guo W.Q., Xu J.F., Xie G.J. (2009) Int. J. Hydrogen Energy 34, 3647. [CrossRef] [Google Scholar]
  • Sun Q., Xiao W., Xi D., Shi J., Yan X., Zhou Z. (2010) Int. J. Hydrogen Energy 35, 4076. [CrossRef] [Google Scholar]
  • Ozmihci S., Kargi F. (2010) J. Ind. Microbiol. Biotechnol 37, 341. [CrossRef] [PubMed] [Google Scholar]
  • Asada Y., Tokumoto M., Aihara Y., Oku M., Iahimi K., Wakayama T., Miyake J., Tomiyama M., Kohno H. (2006) Int. J. Hydrogen Energy 31, 1509. [CrossRef] [Google Scholar]
  • Redwood M.D., Macaskie L.E. (2006) Int. J. Hydrogen Energy 31, 1514. [CrossRef] [Google Scholar]
  • Chen S.D., Lo Y.C., Lee K.S., Huang T.I., Chang J.S. (2009) Sequencing batch reactor enhances bacterial hydrolysis of starch promoting continuous bio-hydrogen production from starch feedstock, Int. J. Hydrogen Energy 34, 8549–8557. [CrossRef] [Google Scholar]
  • Seifert K., Waligorska M., Wojtowski M., Laniecki M. (2009) Hydrogen generation from glycerol in batch fermentation process, Int. J. Hydrogen Energy 34, 3671–3678. [CrossRef] [Google Scholar]
  • Lin C.N., Wu S.Y., Chang J.S., Chang J.S. (2009) Bio hydrogen production in a three-phase fluidized bed bioreactor using sewage sludge immobilized by ethylene-vinyl acetate copolymer, Bioresour. Technol. 100, 3298–3301. [CrossRef] [Google Scholar]
  • Yasin Nazlina H.M., Aini R., Ismail F., Zulkhairi M., Hassan M.A. (2009) Effect of different temperature, initial pH and substrate composition on bio hydrogen production from food waste in batch fermentation, Asian J. Biotechnology 1, 42–50. [CrossRef] [Google Scholar]
  • Zhu J., Li Y., Wu X., Miller C., Chen P., Ruan R. (2009) Swine manure fermentation for hydrogen production, Bioresour. Technol. 100, 5472–5477. [CrossRef] [Google Scholar]
  • Gadhamshetty V., Johnson D.C., Nirmalakhandan N., Smith G.B., Deng S. (2009) Feasibility of bio hydrogen production at low temperatures in unbuffered reactors, Int. J. Hydrogen Energy 34, 1233–1243. [CrossRef] [Google Scholar]
  • Ghosh D., Hallenbeck P.C. (2009) Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered Escherichia coli DJT135, Int. J. Hydrogen Energy 34, 7979–7982. [CrossRef] [Google Scholar]
  • Kargi F., Pamukoglu M.Y. (2009) Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch operation, Int. J. Hydrogen Energy 34, 2940–2946. [CrossRef] [Google Scholar]
  • Han W., Ye M., Zhu A.J., Zhao H.T., Li Y.F. (2015) Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production, Bioresour. Technol. 191, 24–29. [CrossRef] [Google Scholar]
  • Chookaew T., O-Thong S.Prasertsan P. (2015) Bio hydrogen production from crude glycerol by two stage of dark and photo fermentation, Int. J. Hydrogen Energy 40, 7433–7438. [CrossRef] [Google Scholar]
  • Wicher E., Seifert K., Zagrodnik R., Pietrzyk B., Laniecki M. (2013) Hydrogen gas production from distillery wastewater by dark fermentation, Int. J. Hydrogen Energy 38, 7767–7773. [CrossRef] [Google Scholar]
  • Moreno R., Escapa A., Cara J., Carracedo B., Gómez X. (2015) A two-stage process for hydrogen production from cheese whey: integration of dark fermentation and bio catalysed electrolysis, Int. J. Hydrogen Energy 40, 168–175. [CrossRef] [Google Scholar]
  • Su H., Cheng J., Zhou J., Song W., Cen K. (2010) Hydrogen production from water hyacinth through dark and photo fermentation, Int. J. Hydrogen Energy 35, 8929–8937. [CrossRef] [Google Scholar]
  • Argun H., Kargi F. (2009) Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat, Int. J. Hydrogen Energy 34, 8543–8548. [CrossRef] [Google Scholar]
  • Laurinavichene T.V., Belokopytov B.F., Laurinavichius K.S., Tekucheva D.N., Seibert M., Tsygankov A.A. (2010) Towards the integration of dark- and photo-fermentative waste treatment. 3. Potato as substrate for sequential dark fermentation and light-driven H2 production, Int. J. Hydrogen Energy 35, 8536–8543. [CrossRef] [Google Scholar]
  • Ozmihci S., Kargi F. (2010) Effects of starch loading rate on performance of combined fed-batch fermentation of ground wheat for bio-hydrogen production, Int. J. Hydrogen Energy 35, 1106–1111. [CrossRef] [Google Scholar]
  • Avcioglu S.G., Ozgur E., Eroglu I., Yucel M., Gunduz U. (2011) Bio hydrogen production in an outdoor panel photo bioreactor on dark fermentation effluent of molasses, Int. J. Hydrogen Energy 36, 11360–11368. [CrossRef] [Google Scholar]
  • Keskin T., Hallenbeck P.C. (2012) Hydrogen production from sugar industry wastes using single-stage photo fermentation, Bioresour. Technol. 112, 131–136. [CrossRef] [Google Scholar]
  • Zhu Z., Shi J., Zhou Z., Hu F., Bao J. (2010) Photo-fermentation of Rhodobacter sphaeroides for hydrogen production using lignocellulose-derived organic acids, Process Biochem. 45, 1894–1898. [CrossRef] [Google Scholar]
  • Francou N., Vignais P.M. (1984) Hydrogen production by Rhodopseudomonas capsulata cells entrapped in carrageenan beads, Biotechnol. Lett. 6, 639–644. [CrossRef] [Google Scholar]
  • Taguchi F., Mizukami N., Hasegawa K., Saito-Taki T. (1994) Microbial conversion of arabinose and xylose to hydrogen by a newly isolated Clostridium sp. No. 2, Can. J. Microbiol. 40, 228–233. [CrossRef] [Google Scholar]
  • Akkerman I., Janssen M., Rocha J.M.S., Reith J.H., Wijffels R.H. (2003) Photo biological hydrogen production: photochemical efficiency and bioreactor design, in: Reith J.H., Wijffels R.H., Barten H. (eds), Bio methane and bio hydrogen: status and perspectives of biological methane and hydrogen production, Dutch Biological Hydrogen Foundation, Hague, pp. 124–145. [Google Scholar]
  • Evens T.J., Chapman D.J., Robbins R.A., D’Asaro E.A. (2000) An analytical pat-plate photo bioreactor with a spectrally attenuated light source for the incubation of phytoplankton under dynamic light regimes, Hydrobiologia 434, 55–62. [CrossRef] [Google Scholar]
  • Laurinavichene T.V., Kosourov S.N., Ghirardi M.L., Seibert M., Tsygankov A.A. (2008) Prolongation of H2 photo production by immobilized, sulphur-limited Chlamydomonas reinhardtii cultures, J. Biotechnol. 134, 275–277. [PubMed] [Google Scholar]
  • Show K.Y., Lee D.J., Chang J.S. (2011) Bioreactor and process design for bio hydrogen production, Bioresour. Technol. 102, 8524–8533. [CrossRef] [Google Scholar]
  • Show K.Y., Zhang Z.P., Tay J.H., Liang T.D., Lee D.J., Jiang W.J. (2007) Production of hydrogen in a granular sludge-based anaerobic continuous stirred tank reactor, Int. J. Hydrogen Energy 32, 4744–4753. [CrossRef] [Google Scholar]
  • Show K.Y., Zhang Z.P., Tay J.H., Liang T., Lee D.J., Ren N.Q. (2010) Critical assessment of anaerobic process for continuous bio hydrogen production from organic wastewater, Int. J. Hydrogen Energy 35, 13350–13355. [CrossRef] [Google Scholar]
  • Zhang Z.P., Show K.Y., Tay J.H., Liang D.T., Lee D.J., Jiang W.J. (2007b) Rapid formation of hydrogen-producing granules in an anaerobic continuous stirred tank reactor induced by acid incubation, Biotechnology Bioeng. 96, 1040–1050. [CrossRef] [Google Scholar]
  • Zhang Z.P., Show K.Y., Tay J.H., Liang T.D., Lee D.J., Wang J.Y. (2008d) The role of acid incubation in rapid immobilization of hydrogen-producing culture in anaerobic up flow column reactors, Int. J. Hydrogen Energy 33, 5151–5160. [CrossRef] [Google Scholar]
  • Wu S.Y., Hung C.H., Lin C.N., Chen H.W., Lee A.S., Chang J.S. (2006) Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge, Biotechnology Bioeng. 93, 934–946. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.