Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 33
Number of page(s) 13
DOI https://doi.org/10.2516/ogst/2019005
Published online 01 April 2019
  • Holm L.W. (1970) Foam injection test in the Siggins Field, Illinois, Society of Petroleum Engineers. SPE-2750-PA. doi: 10.2118/2750-PA. [Google Scholar]
  • Jonas T.M., Chou S.I., Vasicek S.L. (eds). (1990) Evaluation of a CO2 foam field trial: Rangely Weber sand unit, Society of Petroleum Engineers. [Google Scholar]
  • Heller J.P., Boone D.A., Watts R.J. (1985) Field test of CO2 mobility control at Rock Creek, Society of Petroleum Engineers. [Google Scholar]
  • Hoefner M.L., Evans E.M. (1995) CO2 foam: results from four developmental field trials. SPE-27787-PA. doi: 10.2118/27787-PA. [Google Scholar]
  • Radke C.J., Gillis J.V. (eds) (1990) A dual gas tracer technique for determining trapped gas saturation during steady foam flow in porous media, Society of Petroleum Engineers. [Google Scholar]
  • Osterloh W.T., Jante M.J. Jr (1992) Effects of gas and liquid velocity on steady-state foam flow at high temperature, Society of Petroleum Engineering. [Google Scholar]
  • Alvarez J.M., Rivas H.J., Rossen W.R. (eds) (1999) Unified model for steady-state foam behavior at high and low foam qualities, Society of Petroleum Engineers. [Google Scholar]
  • Khatib Z.I., Hirasaki G.J., Falls A.H. (1988) Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media, Society of Petroleum Engineering. [Google Scholar]
  • Farajzadeh R., Lotfollahi M., Eftekhari A.A., Rossen W.R., Hirasaki G.J.H. (2015) Effect of permeability on implicit-texture foam model parameters and the limiting capillary pressure, Energy Fuels 29, 5, 3011–3018. doi: 10.1021/acs.energyfuels.5b00248. [CrossRef] [Google Scholar]
  • Friedmann F., Jensen J.A. (eds) (1986) Some parameters influencing the formation and propagation of foams in porous media, Society of Petroleum Engineers. [Google Scholar]
  • Kim J., Dong Y., Rossen W.R. (2005) Steady-state flow behavior of CO2 foam. SPE-89351-PA. doi: 10.2118/89351-PA. [Google Scholar]
  • Farajzadeh R., Andrianov A., Bruining H., Zitha P.L.J. (2009) Comparative study of CO2 and N2 foams in porous media at low and high pressure–temperatures, Ind. Eng. Chem. Res. 48, 9, 4542–4552. doi: 10.1021/ie801760u. [CrossRef] [Google Scholar]
  • Farajzadeh R., Muruganathan R.M., Rossen W.R., Krastev R. (2011) Effect of gas type on foam film permeability and its implications for foam flow in porous media, Adv. Colloid Interface Sci. 168, 1–2, 71–78. doi: 10.1016/j.cis.2011.03.005. [CrossRef] [PubMed] [Google Scholar]
  • Zeng Y., Farajzadeh R., Eftekhari A.A., Vincent-Bonnieu S., Muthuswamy A., Rossen W.R., Hirasaki G.J., Biswal S.L. (2016) Role of gas type on foam transport in porous media, Langmuir 32, 25, 6239–6245. doi: 10.1021/acs.langmuir.6b00949. [CrossRef] [PubMed] [Google Scholar]
  • Vikingstad A.K., Aarra M.G. (2009) Comparing the static and dynamic foam properties of a fluorinated and an alpha olefin sulfonate surfactant, J. Pet. Sci. Eng. 65, 105. [CrossRef] [Google Scholar]
  • Rossen W.R. (1988) Theories of foam mobilization pressure gradient, SPE Enhanced Oil Recovery Symposium, 16–21 April, Tulsa, Oklahoma, Society of Petroleum Engineers. [Google Scholar]
  • Ashoori E., Marchesin D., Rossen W.R. (2011) Dynamic foam behavior in the entrance region of a porous medium, Colloids Surf. A: Physicochem. Eng. Aspects 377, 1, 217–227. doi: 10.1016/j.colsurfa.2010.12.043. [CrossRef] [Google Scholar]
  • Falls A.H., Musters J.J., Ratulowski J. (1989) The apparent viscosity of foams in homogeneous bead packs, SPE Reserv. Eng. 4, 2, 155–164. doi: 10.2118/16048-PA. [CrossRef] [Google Scholar]
  • Chambers K.T., Radke C.J. (1991) Capillary phenomena in foam flow through porous media, in: Morrow N.R. (ed), Interfacial phenomena in petroleum recovery, Marcel Dekker, New York, NY, pp. 191–256. [Google Scholar]
  • Lee H.O., Heller J.P., Hoefer A. (1991) Change in apparent viscosity of CO2 foam with rock permeability, SPE Reserv. Eng. 6, 4, 421–428. doi: 10.2118/20194-PA. [CrossRef] [Google Scholar]
  • Zhang Z.F., Zhong L., White M.D., Szecsody J.E. (2012) Experimental investigation of the effective foam viscosity in unsaturated porous media, Vadose Zone J. 11, 4. doi: 10.2136/vzj2011.0190. [Google Scholar]
  • Jimenez A.I., Radke C.J. (1989) Dynamic stability of foam lamellae flowing through a periodically constricted pore, ACS Symp. Ser. 396, 460–479. [CrossRef] [Google Scholar]
  • Gassara O., Douarche F., Braconnier B., Bourbiaux B. (2017) Calibrating and interpreting implicit-texture models of foam flow through porous media of different permeabilities, J. Pet. Sci. Eng. 159, 588–602. doi: 10.1016/j.petrol.2017.09.069. [CrossRef] [Google Scholar]
  • Hirasaki G.J., Lawson J.B. (1985) Mechanisms of foam flow in porous media: Apparent viscosity in smooth capillaries, Soc. Pet. Eng. J. 25, 2, 176–190. doi: 10.2118/12129-PA. [CrossRef] [Google Scholar]
  • Falls A.H., Hirasaki G.J., Patzek T.W., Gauglitz D.A., Miller D.D., Ratulowski T. (1988) Development of a mechanistic foam simulator: the population balance and generation by snap-off, Society of Petroleum Engineers Press. SPE-14961-PA. doi: 10.2118/14961-PA. [Google Scholar]
  • Ma K., Ren G., Mateen K., Morel D., Cordelier P. (2015) Modeling techniques for foam flow in porous media, Society of Petroleum Engineering. [Google Scholar]
  • Jones S.A., Dollet B., Méheust Y., Cox S.J., Cantat I. (2013) Structure-dependent mobility of a dry aqueous foam flowing along two parallel channels, Phys. Fluids 25, 6, 63101. doi: 10.1063/1.4811178. [CrossRef] [Google Scholar]
  • Kovscek A.R., Radke C.J. (eds) (1994) Fundamentals of foam transport in porous media, ACS Publications, Washington, DC. [Google Scholar]
  • Rossen W.R., Gauglitz P.A. (1990) Percolation theory of creation and mobilization of foams in porous media, AIChE J. 36, 8, 1176–1188. doi: 10.1002/aic.690360807. [CrossRef] [Google Scholar]
  • Ransohoff T.C., Radke C.J. (1988) Mechanisms of foam generation in glass-bead packs, SPE Reserv. Eng. 3, 2, 573–585. doi: 10.2118/15441-PA. [CrossRef] [Google Scholar]
  • Friedmann F., Chen W.H., Gauglitz P.A. (1991) Experimental and simulation study of high-temperature foam displacement in porous media, Society of Petroleum Engineers. SPE-17357-PA. doi: 10.2118/17357-PA. [Google Scholar]
  • Géraud B., Méheust Y., Cantat I., Dollet B. (2017) Lamella division in a foam flowing through a two-dimensional porous medium: A model fragmentation process, Phys. Rev. Lett. 118, 9, 98003. doi: 10.1103/PhysRevLett. 118.098003. [CrossRef] [Google Scholar]
  • Géraud B., Jones S.A., Isabelle C., Benjamin D., Yves M. (2016) The flow of a foam in a two-dimensional porous medium, Water Resour. Res. 52, 2, 773–790. doi: 10.1002/2015WR017936. [CrossRef] [Google Scholar]
  • Apaydin O.G., Kovscek A.R. (2001) Surfactant concentration and end effects on foam flow in porous media, Transp. Porous Med. 43, 3, 511–536. doi: 10.1023/A:1010740811277. [CrossRef] [Google Scholar]
  • Nguyen Q.P. (2004) Dynamics of foam in porous media, Doctoral Thesis, TU Delft, The Netherlands. [Google Scholar]
  • Nguyen Q.P., Currie P.K., Buijse M., Zitha P.L.J. (2007) Mapping of foam mobility in porous media, J. Pet. Sci. Eng. 58, 1–2, 119–132. doi: 10.1016/j.petrol.2006.12.007. [CrossRef] [Google Scholar]
  • Simjoo M., Nguyen Q.P., Zitha P.L.J. (2012) Rheological transition during foam flow in porous media, Ind. Eng. Chem. Res. 51, 30, 10225–10231. doi: 10.1021/ie202218z. [CrossRef] [Google Scholar]
  • Nguyen Q.P., Zitha P.L.J., Currie P.K., Rossen W.R. (eds) (2005) CT study of liquid diversion with foam, Society of Petroleum Engineers. [Google Scholar]
  • Zitha P.L.J., Nguyen Q.P., Currie P.K. (eds) (2003) Effect of flow velocity and rock layering on foam flow: an X-ray computed tomography study, Society of Petroleum Engineers. [Google Scholar]
  • Simjoo M., Dong Y., Andrianov A., Talanana M., Zitha P.L.J. (2013) CT scan study of immiscible foam flow in porous media for enhancing oil recovery, Ind. Eng. Chem. Res. 52, 18, 6221–6233. doi: 10.1021/ie300603v. [CrossRef] [Google Scholar]
  • Wellington S.L., Vinegar H.J. (1987) X-ray computerized tomography, J. Pet. Technol., Soc. Pet. Eng. 39, 885–898. [CrossRef] [Google Scholar]
  • Akin S., Kovscek A.R. (2003) Computed tomography in petroleum engineering research, Geol. Soc. Lond. Spec. Publ. 215, 1, 23–38. doi: 10.1144/GSL.SP.2003.215.01.03. [CrossRef] [Google Scholar]
  • Kovscek A.R., Tretheway D.C., Persoff P., Radke C.J. (1995) Foam flow through a transparent rough-walled rock fracture, J. Pet. Sci. Eng. 13, 2, 75–86. doi: 10.1016/0920-4105(95)00005-3. [CrossRef] [Google Scholar]
  • Gauglitz P.A., Friedmann F., Kam S.I., Rossen W.R. (2002) Foam generation in homogeneous porous media, Chem. Eng. Sci. 57, 19, 4037–4052. doi: 10.1016/S0009-2509(02)00340-8. [CrossRef] [Google Scholar]
  • Tanzil D., Hirasaki G.J., Miller C.A. (eds) (2002) Conditions for foam generation in homogeneous porous media, Society of Petroleum Engineers. [Google Scholar]
  • Nguyen Q.P., Currie P.K., Zitha P.L.J. (eds) (2003) Determination of foam induced fluid partitioning in porous media using X-ray computed tomography, Society of Petroleum Engineers. [Google Scholar]
  • Rossen W.R. (1999) Foam generation at layer boundaries in porous media, Society of Petroleum Engineers. SPE-59395-PA. doi: 10.2118/59395-PA. [Google Scholar]
  • Kahrobaei S., Vincent-Bonnieu S., Farajzadeh R. (2017) Experimental study of hysteresis behavior of foam generation in porous media, Sci. Rep. 7, 1, 8986. doi: 10.1038/s41598-017-09589-0. [CrossRef] [PubMed] [Google Scholar]
  • Jones S.A., Getrouw N., Vincent-Bonnieu S. (2018) Foam flow in a model porous medium: II. The effect of trapped gas, Soft Matter 14, 18, 3497–3503. doi: 10.1039/c7sm02458d. [CrossRef] [PubMed] [Google Scholar]
  • Rossen W.R., Wang M.W. (1999) Modeling foams for acid diversion, Society of Petroleum Engineers. SPE-56396-PA. doi: 10.2118/56396-PA. [Google Scholar]
  • Ettinger R.A., Radke C.J. (1992) Influence of texture on steady foam flow in Berea Sandstone, Society of Petroleum Engineering. [Google Scholar]
  • Schramm L.L. (1994) Foams: fundamentals and applications in the petroleum industry, American Chemical Society, Washington, DC. [CrossRef] [Google Scholar]
  • Wassmuth F.R., Green K.A., Randall L. (2001) Details of in-situ foam propagation exposed with magnetic resonance imaging, Society of Petroleum Engineers. doi: 10.2118/71300-PA. [Google Scholar]
  • Xu Q., Rossen W.R. (2004) Experimental study of gas injection in a surfactant-alternating-gas, Society of Petroleum Engineers. SPE-84183-PA. doi: 10.2118/84183-PA. [Google Scholar]
  • Kibodeaux K.R., Rossen W.R. (1997) Coreflood study of surfactant-alternating-gas foam processes: implications for field design, Society of Petroleum Engineers. [Google Scholar]
  • Zhou Z., Rossen W.R. (1995) Applying fractional-flow theory to foam processes at the “limiting capillary pressure”, SPE Adv. Technol. Ser. 3, 1, 154–162. doi: 10.2118/24180-PA. [CrossRef] [Google Scholar]
  • Zhou Z.H., Rossen W.R. (1994) Applying fractional-flow theory to foams for diversion in matrix acidization, Society of Petroleum Engineers. SPE-24660-PA. doi: 10.2118/24660-PA. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.