Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 9
Number of page(s) 11
DOI https://doi.org/10.2516/ogst/2018088
Published online 09 January 2019
  • Abdo J., Haneef M.D. (2011) Nano-enhanced drilling fluids: pioneering approach to overcome uncompromising drilling problems, J. Energy Res. Tech. 134, 1–6. [CrossRef] [Google Scholar]
  • Agarwal S., Tran P., Soong Y., Martello D., Gupta R.K. (2011) Flow behavior of nanoparticle stabilized drilling fluids and effect of high temperature aging, AADE National Technical Conference and Exhibition, Houston, Texas. [Google Scholar]
  • Amani M., Al-Jubouri M., Shadravan A. (2012) Comparative study of using oil-based mud versus water-based mud in HPHT fields, Adv. Pet. Explor. Dev. 4, 18–27. [Google Scholar]
  • Anoop K.B., Kabelac S., Sundararajan T., Das S.K. (2009) Rheological and flow characteristics of nanofluids: Influence of electroviscous effects and particle agglomeration, J. Appl. Phys. 106, 1–7. [Google Scholar]
  • Arabloo M., Shahri M.P. (2014) Experimental studies on stability and viscoplastic modeling of colloidal gas aphron (CGA) based drilling fluids, J. Pet. Sci. Eng. 113, 8–22. [Google Scholar]
  • Barnes H., Hutton J., Walters K. (1989) An introduction to rheology, in: Walters K. (ed), Rheology Series, Vol. 3, Elsevier Science. [Google Scholar]
  • Bizmark N., Ioannidis M.A. (2015) Effects of ionic strength on the colloidal stability and interfacial assembly of hydrophobic ethyl cellulose nanoparticles, Langmuir 31, 9282–9289. [CrossRef] [PubMed] [Google Scholar]
  • Choi S.U., Eastman J. (1995) Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab, IL, USA. [Google Scholar]
  • Ezeakacha C.P., Salehi S. (2018) Experimental and statistical investigation of drilling fluids loss in porous media-part 1, J. Nat. Gas Sci. Eng. 51, 104–115. [Google Scholar]
  • Friedheim J.E., Young S., De Stefano G., Lee J., Guo Q. (2012) Nanotechnology for oilfield applications – Hype or reality? SPE International Oilfield Nanotechnology Conference and Exhibition, Society of Petroleum Engineers, Noordwijk, The Netherlands. [Google Scholar]
  • Hassani A.H., Ghazanfari M.H. (2017) Improvement of non-aqueous colloidal gas aphron-based drilling fluids properties: role of hydrophobic nanoparticles, J. Nat. Gas Sci. Eng. 42, 1–12. [Google Scholar]
  • Herschel W.H., Bulkley R. (1926) Konsistenzmessungen von Gummi-Benzol-Loesungen, Kolloid Z. 39, 291–300. [CrossRef] [Google Scholar]
  • Hoelscher K.P., De Stefano G., Riley M., Young S. (2012) Application of nanotechnology in drilling fluids, SPE International Oilfield Nanotechnology Conference and Exhibition, Society of Petroleum Engineers, Noordwijk, The Netherlands. [Google Scholar]
  • Javeri S.M., Haindade Z.M.W., Jere C.B. (2011) Mitigating loss circulation and differential sticking problems using silicon nanoparticles, SPE/IADC Middle East Drilling Technology Conference and Exhibition, Society of Petroleum Engineers, Muscat, Oman. [Google Scholar]
  • Karimi H., Yousefi F., Rahimi M. (2011) Correlation of viscosity in nanofluids using genetic algorithm-neural network (GA-NN), Heat Mass Transfer 47, 1417–1425. [CrossRef] [Google Scholar]
  • Li G., Zhang J., Zhao H., Hou Y. (2012) Nanotechnology to improve sealing ability of drilling fluids for shale with micro-cracks during drilling, SPE International Oilfield Nanotechnology Conference and Exhibition, Society of Petroleum Engineers, Noordwijk, The Netherlands. [Google Scholar]
  • Nguyen C., Desgranges F., Roy G., Galanis N., Mare T., Boucher S., Angue Mintsa H. (2007) Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon, Int. J. Heat Fluid Flow 28, 1492–1506. [Google Scholar]
  • Paiaman A.M., Al-Anazi B.D. (2009) Feasibility of decreasing pipe sticking probability using nanoparticles, Nafta 60, 645–647. [Google Scholar]
  • Papanastasiou T.C. (1987) Flow of materials with yield, J. Rheol. 31, 385–404. [CrossRef] [Google Scholar]
  • Rao M.A., Cooley H.J. (1983) Applicability of flow models with yield for tomato concentrates, J. Food Process Eng. 6, 159–173. [Google Scholar]
  • Song K., Wu Q., Li M.C., Wojtanowicz A.K., Dong L., Zhang X., Ren S., Lei T. (2016) Performance of low solid bentonite drilling fluids modified by cellulose nanoparticles, J. Nat. Gas Sci. Eng. 34, 1403–1411. [Google Scholar]
  • Tehrani A., Young S., Gerrard D., Fernandez J. (2009) Environmentally friendly water based fluid for HT/HP drilling, SPE International Symposium on Oilfield Chemistry, Society of Petroleum Engineers, Woodland, Texas, USA. [Google Scholar]
  • Torsater O., Li S., Hendraningrat L. (2013) A coreflood investigation of nanofluid enhanced oil recovery in low-medium permeability berea sandstone, SPE International Symposium on Oilfield Chemistry, Society of Petroleum Engineers, Woodlands, Texas, USA. [Google Scholar]
  • William J.K.M., Ponmani S., Samuel R., Nagarajan R., Sangwai J.S. (2014) Effect of CuO and ZnO nanofluids in xanthan gum on thermal, electrical and high pressure rheology of water-based drilling fluids, J. Pet. Sci. Eng. 117, 15–27. [Google Scholar]
  • Xie H., Yu W., Li Y., Chen L. (2011) Discussion on the thermal conductivity enhancement of nanofluids, Nanoscale Res. Lett. 6, 124. [CrossRef] [PubMed] [Google Scholar]
  • Zakaria M., Husein M.M., Harland G. (2012) Novel nanoparticle-based drilling fluid with improved characteristics, SPE International Oilfield Nanotechnology Conference, Society of Petroleum Engineers, Noordwijk, The Netherlands. [Google Scholar]
  • Zoveidavianpoor M., Samsuri A. (2016) The use of nano-sized tapioca starch as a natural water-soluble polymer for filtration control in water-based drilling muds, J. Nat. Gas Sci. Eng. 34, 832–840. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.