Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 56
Number of page(s) 11
DOI https://doi.org/10.2516/ogst/2018052
Published online 21 November 2018
  • Rogel E., Ovalles C., Moir M. (2010) Asphaltene stability in crude oils and petroleum materials by solubility profile analysis, Energy Fuels. 24, 8, 4369–4374. [CrossRef] [Google Scholar]
  • Zekri A.Y., Shedid A.S., Alkashef H. (2001) A novel technique for treating asphaltene deposition using laser technology, in: SPE Permian Basin Oil and Gas Recovery Conference, Midland, Texas, May 15–17, Paper SPE 70050-MS. [Google Scholar]
  • Buriro M., Talib S.M. (2012) Asphaltene precipitation and prevention: A strategy to control asphaltene precipitation, in: SPE/PAPG Annual Technical Conference, Islamabad, Pakistan, December 3–5, Paper SPE 163129. [Google Scholar]
  • Andeson S.I., Stendy E.H. (1996) Thermodynamics of asphaltene precipitation and dissolution investigation of temperature and solvent effects, Fuel Science Technology Int. J. 14, 1 and 2, 231–287. [Google Scholar]
  • Gawrys K.L., Spiecker P.M., Kilpatrick P.K. (2003) The Role of Asphaltene Solubility and Chemical Composition on Asphaltene Aggregation, Pet. Sci. Technol. 21, 3 and 4, 461–489. [CrossRef] [Google Scholar]
  • Hammami A., Ferworn K.A., Nighswander J.A., Sverre Over S., Stange E. (1998) Asphaltinic crude oil characterization: an experimental investigation of the effect of resins on stability of asphaltene, Pet. Sci. Technol. 16, 3 and 4, 227–249. [CrossRef] [Google Scholar]
  • Hirschberg A., deJong L.N.J., Schipper B.A., Meijer J.G. (1984) Influence of temperature and pressure on asphaltene flocculation, SPEJ 24, 3, 283–293. [CrossRef] [Google Scholar]
  • Kralova I., Sjöblom J., Øye G., Simon S., Grimes B.A., Paso K. (2011) Heavy crude oils/particle stabilized emulsions, Adv. Colloid Interface Sci. 169, 2, 106–127. [CrossRef] [PubMed] [Google Scholar]
  • Yarranton H.W., Alboudwarej H., Jakher R. (2000) Investigation of asphaltene association with vapor pressure osmometry and interfacial tension measurements, Ind. Eng. Chem. Res. 39, 8, 2916–2924. [CrossRef] [Google Scholar]
  • Hemmati-Sarapardeh A., Alipour-Yeganeh-Marand R., Naseri A., Safiabadi A., Gharagheizi F., Ilani- Kashkouli P., Mohammadi A.H. (2013) Asphaltene precipitation due to natural depletion of reservoir: Determination using a SARA fraction based intelligent model, Fluid Phase Equilib. 354, 177–184. [CrossRef] [Google Scholar]
  • Rudyk S., Spirov P. (2014) Upgrading and extraction of bitumen from Nigerian tar sand by supercritical carbon dioxide, Appl. Energy 113, 1397–1404. [CrossRef] [Google Scholar]
  • Östlund J.A., Wattana P., Nydén M., Fogler H.S. (2004) Characterization of fractionated asphaltenes by UV–vis and NMR self-diffusion spectroscopy, J. Colloid Interface Sci. 271 2, 372–380. [CrossRef] [Google Scholar]
  • Thawer R., Nicoll D.C.A., Dick G. (1990) Asphaltene deposition in production facility, SPE Prod. Eng. 5, 475–480. [CrossRef] [Google Scholar]
  • Valter Antonio M.B., Mansoori G.A., De Almeida Xavier L.C., Park S.J., Manafi H. (2001) Asphaltene flocculation and collapse from petroleum fluids, J. Pet. Sci. Eng. 32, 217–230. [CrossRef] [Google Scholar]
  • Pedersen K.S., Christensen P.L. (2007) Phase behavior of petroleum reservoir fluids, 1st edn., Taylor and Francis Group, Boca Raton, Florida. [Google Scholar]
  • Rogel E., Ovalles C., Moir M. (2012) Asphaltene chemical characterization as a function of solubility: effects on stability and aggregation, Energy Fuels 26, 5, 2655–2662. [CrossRef] [Google Scholar]
  • Bouts M.N., Wiersma R.J., Muljs H.M. (1995) An evaluation of new asphaltene inhibitors: laboratory study and field-testing, in: Presented at international symposium on oilfield chemistry in San Antonio, TX February 14–17, SPE 28991. [Google Scholar]
  • Yen A., Yin Y.R., Asomaning S. (2001) Evaluating asphaltene inhibitors: laboratory tests and field studies, in: SPE International Symposium on Oilfield Chemistry, Houston, TX, February 13–16, SPE paper 65376-MS. [Google Scholar]
  • Misra S., Baruah S., Singh K. (1995) Paraffin problems in crude oil production and transportation: A review, SPE Prod. & Fac. 10, 1, 50–54, Paper SPE-28181-PA. [CrossRef] [Google Scholar]
  • Misra S., Abdulla D., Bazuhair M.K., Aboukhsem A.A., Stenger B.A., Al-Katheeri A.B. (2011) Management of asphaltenes deposition in a giant carbonate onshore oil, field, Abu Dhabbi, UAE, SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, September 25–28, SPE Paper 140278-MS. [Google Scholar]
  • Alapati R.R., Joshi N. (2013) New test method for field evaluation of asphaltene deposition, in: Offshore Technology Conference, Houston, TX, USA, May 06–09, Paper OTC-24168-MS. [Google Scholar]
  • Akbarzadeh K., Eskin D., Ratulowski J., Taylor S.D. (2011) Asphaltene deposition measurement and modelling for flow assurance of subsea tubings and pipelines, Offshore Technology Conference, Rio de Janeiro, Brazil, October 04–06, Paper OTC-22316-MS. [Google Scholar]
  • Newberry M.E., Barker K.M. (1985) Formation damage prevention through the control of paraffin and asphaltene deposition, SPE Production Operations Symposium, Oklahoma City, Oklahoma, March 10–12, Paper SPE 13796. [Google Scholar]
  • Nassar N.N. (2010) Asphaltene adsorption onto alumina nanoparticles: kinetics and thermodynamic studies, Energy Fuels. 24, 8, 4116–4122. [CrossRef] [Google Scholar]
  • Nassar N.N., Hassan A., Carbognani L., Lopez-Linares F., Pereira-Almao P. (2012) Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes, Fuel 95, 257–262. [CrossRef] [Google Scholar]
  • Nassar N.N., Hassan A., Luna G., Pereira-Almao P. (2013) Kinetics of the catalytic thermooxidation of asphaltenes at isothermal conditions on different metal oxide nanoparticle surfaces, Catal. Today 207, 127–132. [CrossRef] [Google Scholar]
  • Nassar N.N., Hassan A., Pereira-Almao P. (2011) Application of nanotechnology for heavy oil upgrading: catalytic steam gasification/cracking of asphaltenes, Energy Fuels 25 4, 1566–1570. [CrossRef] [Google Scholar]
  • Nassar N.N., Hassan A., Pereira-Almao P. (2011) Metal oxide nanoparticles for asphaltene adsorption and oxidation, Energy Fuels 25, 3, 1017–1023. [CrossRef] [Google Scholar]
  • Nassar N.N., Hassan A., Pereira-Almao P. (2011) Comparative oxidation of adsorbed asphaltenes onto transition metal oxide nanoparticles, Colloids Surf. A. 384, 1–3, 145–149. [CrossRef] [Google Scholar]
  • Hlady V., Lyklema J., Fleer G.J. (1982) Effect of polydispersity on the adsorption of dextran on silver-iodide, J , Colloid Interface Sci. 87, 395–406. [CrossRef] [Google Scholar]
  • McLean J.D., Kilpatrick P.K. (1997) Comparison of precipitation and extrography in the fractionation of crude oil residua, Energy Fuels 11, 570–585. [CrossRef] [Google Scholar]
  • Lian H.J., Lin J.R., Yen T.F. (1994) Peptization studies of asphaltene and solubility parameter spectra, Fuel 73, 423–428. [CrossRef] [Google Scholar]
  • Pernyeszi T., Patzko A., Berkesi O., Dekany I. (1998) Asphaltene adsorption on clays and crude oil reservoir rocks, Colloids Surfaces A – Physicochem. Eng. Aspects. 137, 373–384. [CrossRef] [Google Scholar]
  • Simon S., Jestin J., Palermo T., Barre L. (2009) Relation between solution and interfacial properties of asphaltene aggregates, Energy Fuels 23 1, 306–313. [CrossRef] [MathSciNet] [Google Scholar]
  • Clementz D.M. (1976) Interaction of petroleum heavy ends with montmorillonite, Clays Clay Miner. 24, 312–319. [CrossRef] [Google Scholar]
  • Acevedo S., Ranaudo M.A., Garcia C., Castillo J., Fernandez A. (2003) Adsorption of asphaltenes at the toluene-silica interface: a kinetic study, Energy Fuels 17, 257–261. [CrossRef] [Google Scholar]
  • Czarnecka E., Gillott J.E. (1980) Formation and characterization of clay complexes with bitumen from athabasca oil sand, Clays Clay Miner. 28, 197–203. [CrossRef] [Google Scholar]
  • Crocker M.E., Marchin L.M. (1988) Wettability and adsorption characteristics of crude-oil asphaltene and polar fractions, J. Petrol. Technol. 40, 470–474. [CrossRef] [Google Scholar]
  • Madhusudhana N., Yogendra K., Mahadevan K.A. (2012) Comparative study on photocatalytic degradation of Violet GL2B azo dye using CaO and TiO nanoparticles, Int J Eng Res Appl. 2 5, 1300–1307. [Google Scholar]
  • Roy A., Samiran S., Bhattacharya M., Bhattacharya J. (2013) Antimicrobial Activity of CaO Nanoparticles, J. Biomed. Nanotechnol. 9, 9, 1–8. [CrossRef] [PubMed] [Google Scholar]
  • Hai X.B., Xiao Z.S., Xiaoand H.L., Sheng Y.L. (2009) Synthesis of porous CaO microsphere and its application in catalyzing transesterification reaction for biodiesel, Trans. Nonferrous Met. 19, 3, 674–677. [CrossRef] [Google Scholar]
  • Wang S., Ma M., Chen S. (2016) Application of PC-SAFT equation of state for CO2 minimum miscibility pressure prediction in nanopores, Presented at SPE Improved Oil Recovery Conference, Tulsa, Oklahoma, USA, April 11–13, Paper SPE 179535. [Google Scholar]
  • Sun J., Zou A., Sotelo E., Schechter D. (2016) Numerical simulation of CO2 huff-n-puff in complex fracture networks of unconventional liquid reservoirs, J. Nat. Gas. Sci., Eng. 31, 481–492. [CrossRef] [Google Scholar]
  • Sun J., Zou A., Schechter D. (2016) Experimental and numerical studies of CO2 EOR in unconventional liquid reservoirs with complex fracture networks, Presented at SPE Improved Oil Recovery Conference, Tulsa, Oklahoma, USA, April 11–13, Paper SPE 179634. [Google Scholar]
  • Azzolina N.A., Nakles D.V., Gorecki C.D., Peck W.D., Ayash S.C., Melzer L.S., Chatterjee S. (2015) CO2 storage associated with CO2 enhanced oil recovery: A statistical analysis of historical operations, Int. J. Greenh. Gas. Con. 37, 384–397. [CrossRef] [Google Scholar]
  • Li Z., Gu Y. (2014) Optimum timing for miscible CO2-EOR after water flooding in a tight sandstone formation, Energy Fuels 28, 488–499. [CrossRef] [Google Scholar]
  • Mohammadi M., Akbari M., Fakhroueian Z., Bahramian A., Azin R., Arya S. (2011) Inhibition of Asphaltene Precipitation by TiO2, SiO2 and ZrO2 Nanofluids, Energy Fuels 25, 7, 3150–3156. [CrossRef] [Google Scholar]
  • Dudášová D., Simon S., Hemmingsen P., Sjöblom J. (2008) Study of asphaltenes adsorption onto different minerals and clays. Part 1. Experimental adsorption with UV depletion detection, Colloids Surf A. 317, 1–9. [CrossRef] [Google Scholar]
  • Lu T., Li Z., Fan W., Zhang X., Lv Q. (2016) Nanoparticles for inhibition of asphaltenes deposition during CO2 flooding, Ind. Eng. Chem. Res. 55, 23, 6723–6733. [CrossRef] [Google Scholar]
  • Leontaritis K.J., Mansoori G.A. (1987) Asphaltene flocculation during oil production and processing: a thermodynamic collodial model, SPE International Symposium on Oilfield Chemistry, San Antonio, Texas, February 4–6, Paper SPE 16258-MS. [Google Scholar]
  • Wu J., Prausnitz J.M., Firoozabadi A. (2000) Molecular thermodynamics of asphaltene precipitation in reservoir fluids, AIChE Journal. 46, 1, 197–209. [CrossRef] [Google Scholar]
  • Nghiem L.X., Hassam M.S., Nutakki R., George A.E.D. (1993) Efficient Modelling of Asphaltene Precipitation, SPE Annual Technical Conference and Exhibition, Houston, Texas, October 3–6, Paper SPE 26642-MS. [Google Scholar]
  • Victorov A.I., Firoozabadi A. (1996) Thermodynamic micellizatin model of asphaltene precipitation from petroleum fluids, AIChE J. 42, 6, 1753–1764. [CrossRef] [Google Scholar]
  • Song S. (2008) Managing flow assurance and operation risks in subsea tie-back system, Offshore Technology Conference, Houston, Texas, USA, May 05–08, SPE paper OTC-19139-MS. [Google Scholar]
  • Fazelipour W. (2011) Predicting asphaltene precipitation in oilfields via the technology of compositional reservoir simulation, SPE International Symposium on Oilfield Chemistry,Woodlands, TX, USA, April 11–13, Paper SPE 141148. [Google Scholar]
  • Pereira V.J., Setaro L.L.O., Costa G.M.N., de Melo S.A.B. (2017) Evaluation and improvement of screening methods applied to asphaltene precipitation, Energy Fuels 31, 4, 3380–3391. [CrossRef] [Google Scholar]
  • Yen A., Yin Y.R., Asomaning S. (2001) Evaluating asphaltene inhibitors: laboratory tests and field studies, SPE International Symposium on Oilfield Chemistry, Houston, Texas, USA, February 13–16, Paper SPE 65376-MS. [Google Scholar]
  • Singh N.B., Singh N.P. (2007) Formation of CaO from Thermal decomposition of calcium carbonate in the presence of carboxylic acids, J. Therm. Anal. Calorim. 89, 1, 159–162. [CrossRef] [Google Scholar]
  • Mousavi-Dehghani S.A., Vafaie-Sefti M., Mansoori G.A. (2007) Experimental and theoretical investigation of asphaltene deposition in natural gas injection, Pet. Sci. Technol. 25, 1435. [CrossRef] [Google Scholar]
  • Mousavi-Dehghani S.A. (2004) Experimental and theoretical investigation of asphaltene deposition in natural gas injection, PhD Thesis, Tarbiat Modares University, Chemical Engineering Department, Tehran, Iran. [Google Scholar]
  • Hassanvand M., Shahsavani B., Anooshe A. (2012) Study of temperature effect on asphaltene precipitation by visual and quantitative methods, J. Pet. Technol. Altern. Fuels 3, 2, 8–18. [Google Scholar]
  • Verdier S., Carrier H., Andersen S.I., Daridon J.L. (2006) Study of pressure and temperature effects on asphaltene stability in presence of CO2 , Energy Fuels 20, 4, 1584–1590. [CrossRef] [Google Scholar]
  • Bahrami P., Kharrat R., Mahdavi S., Ahmadi Y., James L. (2015) Asphaltene laboratory assessment of a heavy onshore reservoir during pressure, temperature and composition variations to predict asphaltene onset pressure, Korean j. Chem. Eng. 32, 2, 316–322. [CrossRef] [Google Scholar]
  • Negahban S., Joshi N., Jamaluddin A.K.M., Nighswander J. (2003) A systematic approach for experimental study of asphaltene deposition for an Abu Dhabi reservoir under WAG development plan, International Symposium on Oilfield Chemistry, Houston, Texas, February 5–7, Society of Petroleum Engineers, Paper SPE 80261-MS. [Google Scholar]
  • Novosad Z., Costain T.G. (1990) Experimental and Modeling Studies of Asphaltene Equilibria for a Reservoir Under CO2 Injection, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, September 23–26, Paper SPE 20530-MS. [Google Scholar]
  • Srivastava R.K., Huang S.S. (1997) Asphaltene deposition during CO2 flooding: a laboratory assessment, SPE Production Operations Symposium, Oklahoma City, Oklahoma, March 9–11, SPE Paper 37468-MS. [Google Scholar]
  • Takahashi S., Hayashi Y., Takahashi S., Yazawa N. (2003) Characteristics and Impact of Asphaltene Precipitation during CO2 Injection in Sandstone and Carbonate Cores: An Investigative Analysis Through Laboratory Tests and Compositional Simulation, SPE International Improved Oil Recovery Conference in Asia Pacific, Kuala Lumpur, Malaysia, October 20–21, Paper SPE 84895-MS. [Google Scholar]
  • Vazquez D., Mansoori G.A. (2000) Identification and Measurement of Petroleum Precipitates, Petrol. Sci. Eng. 26, 1–4, 49–55. [CrossRef] [Google Scholar]
  • Soave G. (1972) Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27, 6, 1197–1203. [CrossRef] [Google Scholar]
  • Multiflash User Guide, (2003) Infochem computer services Ltd, version 3.3. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.