Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 23
Number of page(s) 12
DOI https://doi.org/10.2516/ogst/2018014
Published online 02 July 2018
  • Al-Harthy M.H. (2010) Number of development wells: A decision under Uncertainty, Eng. Econ. 55, 4, 328–349. DOI:10.1080/0013791X.2010.524281 [CrossRef] [Google Scholar]
  • Almeida F.L., Davolio A., Schiozer D.J. (2017) Methodology to systematically reduce uncertainty assimilating quantitatively 4D seismic and well data in a probabilistic and multi-objective history matching, SPE 187081, in: SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA. DOI:10.2118/187081-MS [Google Scholar]
  • Ani M., Oluyemi G., Petrovski A., Rezaei-Gomari S. (2016) Reservoir uncertainty analysis: The trends from probability to algorithms and machine learning, SPE 181049, in: SPE Intelligent Energy International Conference and Exhibition, Aberdeen, United Kingdom. DOI:10.2118/181049-MS [Google Scholar]
  • Artus V., Noetinger B. (2004) Up-scaling two-phase flow in heterogeneuos reservoirs: Current trends, Oil Gas Sci. Technol. 59, 2, 185–195. DOI:10.2516/ogst:2004014 [CrossRef] [Google Scholar]
  • Assunção G.S.C., Davolio A., Schiozer D.J. (2016) A methodology to integrate multiple simulation models and 4D seismic considering their uncertainties, SPE 181608-MS, in: Annual Technical Conference and Exhibition, Dubai, UAE. DOI:10.2118/181608-MS [Google Scholar]
  • Avansi G.D., Schiozer D.J. (2015) UNISIM-I: Synthetic model for reservoir development and management applications, Int. J. Model. Simul. Pet. Ind. 9, 1, 21–30 [Google Scholar]
  • Avansi G.D., Maschio C., Schiozer D.J. (2016) Simultaneous history-matching approach by use of reservoir-characterization and reservoir-simulation studies, SPE Reserv. Eval. Eng. 19, 4, 694–712. DOI:10.2118/179740-PA [CrossRef] [Google Scholar]
  • Begg S., Bratvold R. (2008) Systematic prediction errors in O&G project and portfolio selection, SPE 116525-MS, in: Annual Technical Conference and Exhibition, Denver, Colorado, USA. DOI:10.2118/116525-MS [Google Scholar]
  • Begg S., Bratvold R., Campbell J. (2002) The value of flexibility in managing uncertainty in oil and gas investments, SPE 77586-MS, in: Annual Technical Conference and Exhibition, San Antonio, Texas, USA. DOI:10.2118/77586-MS [Google Scholar]
  • Bickel J.E., Bratvold R.B. (2008) From uncertainty quantification to decision making in the oil and gas industry, Energy Explor. Exploit. 26, 5, 311–325. DOI:10.1260/014459808787945344 [CrossRef] [Google Scholar]
  • Bordeaux-Rego F., Botechia V.E., Correia M.G., Schiozer D.J. (2016) Quantifying the impact of grid size to compare water and polymer flooding strategies in a highly heterogeneous offshore field, Braz. J. Pet. Gas 10, 2, 63–76. DOI:10.5419/bjpg2016-0006 [CrossRef] [Google Scholar]
  • Bratvold R.B., Bickel J.E., Lohne H.P. (2009) Value of information in the oil and gas industry: Past, present and future, SPE 110378-PA, SPE Reserv. Eval. Eng. 12, 4, 630–638. DOI:10.2118/110378-PA [CrossRef] [Google Scholar]
  • Chen M., Dyer J. (2009) Inevitable disappointment in projects selected on the basis of forecasts, SPE 107710-PA, SPE J. 14, 2, 216–221. DOI:10.2118/107710-PA [CrossRef] [Google Scholar]
  • Coopersmith E.M., Cunningham P.C. (2002) A practical approach to evaluating the value of information and real option decisions in the upstream petroleum industry, SPE 77582-MS, in: Annual Technical Conference and Exhibition, San Antonio, Texas, USA. DOI:10.2118/77582-MS [Google Scholar]
  • Costa A.P.A., Schiozer D.J., Moczydlower P., Bedrikovetsky P. (2008) Use of representative models to improve the decision making process of chemical flooding in a mature field, SPE 115442, in: SPE Russian Oil and Gas Technical Conference and Exhibition, Moscow, Russia. DOI:10.2118/115442-MS [Google Scholar]
  • Cunha J.C. (2007) Recent developments on application of decision analysis for the oil industry, SPE 108703, in: 2007 International Oil Conference and Exhibition in Mexico, Veracruz, Mexico. DOI:10.2118/108703-MS [Google Scholar]
  • Davolio A., Maschio C., Schiozer D.J. (2013) Local history matching using 4D seismic data and multiple models combination, SPE 164883, in: EAGE Annual Conference and Exhibition incorporating Europec, London, United Kingdom. DOI:10.2118/164883-MS [Google Scholar]
  • Deutsch C. (1989) Calculating effective absolute permeability in sandstone/shale sequences, SPE 17264-PA, SPE Form. Eval. 4, 3, 343–348. DOI:10.2118/17264-PA [CrossRef] [Google Scholar]
  • Dubrule O. (1998) Geostatistics in petroleum geology, AAPG Continuing Education Course Note Series #38, The American Association of Petroleum Geologists, Tulsa, Oklahoma, USA [Google Scholar]
  • Ferreira C.J., Davolio A., Schiozer D.J. (2015) Improving the estimation of the chance of success of a 4D seismic project based on representative models, SPE 174386-MS, in: SPE Europec, Madrid, Spain. DOI:10.2118/174386-MS [Google Scholar]
  • Fletcher A., Davis J.P. (2002) Decision-making with incomplete evidence, SPE 77914, in: SPE Asia Pacific Oil and Gas Conference and Exhibition, Melbourne, Australia. DOI:10.2118/77914-MS [Google Scholar]
  • Gaspar A.T.F.S., Avansi G.D., Santos A.A.S., Hohendorff F.J.C.V., Schiozer D.J. (2015) Unisim-I-D: Benchmark studies for oil field development and production strategy selection, Int. J. Model. Simul. Pet. Ind. 9, 1, 47–55 [Google Scholar]
  • Gaspar A.T.F.S., Barreto C.E.A., Mazo E.O.M., Schiozer D.J. (2016a) Assisted process for design optimization of oil exploitation strategy, J. Petrol. Sci. Eng. 146, 473–488 [CrossRef] [Google Scholar]
  • Gaspar A.T.F.S., Avansi G.D., Maschio C., Santos A.A.S., Schiozer D.J. (2016b) Unisim-I-M: Benchmark case proposal for oil reservoir management decision-making, SPE 180848, in: SPE Energy Resources Conference, Port of Spain, Trinidad and Tobago. DOI:10.2118/180848-MS [Google Scholar]
  • Gerhardt J.H., Haldorsen H.H. (1989) On the value of information, SPE 19291-MS, in: Offshore Europe, Aberdeen, United Kingdom. DOI:10.2118/19291-MS [Google Scholar]
  • Gorell S., Bassett R. (2001) Trends in reservoir simulation: Big models, scalable models? Will you please make up your mind? in: SPE Annual Technical Conference and Exhibition, New Orleans, Los Angeles, USA. DOI:10.2118/71596-MS [Google Scholar]
  • Harrison J.R., March J.G. (1984) Decision making and postdecision surprises, Admin. Sci. Q. 29, 26–42. DOI:10.2307/2393078 [CrossRef] [Google Scholar]
  • Keisler J.M., Zachary A.C., Chu E., Sinatra N., Linkov I. (2014) Value of information analysis: The state of application, Environ. Syst. Dec. 34, 1, 3–23. DOI:10.1007/s10669-013-9439-4 [CrossRef] [Google Scholar]
  • Kelkar M., Perez G. (2002) Applied Geostatistics for Reservoir Characterization, Society of Petroleum Engineers Inc., Richardson, Texas, USA [Google Scholar]
  • Korounis D., Durlofsky L.J., Jansen J.D., Aziz K. (2014) Adjoint formulation and constraint handling for gradient-based optimization of compositional reservoir flow, Comput. Geosci. 18, 2, 117–137. DOI:10.1007/s10596-013-9385-8 [CrossRef] [Google Scholar]
  • Luo H., Mohanty K.K., Delshad M., Pope G.A. (2016) Modeling and upscaling unstable water and polymer floods: Dynamic characterization of the effective finger zone, SPE 179648, in: SPE Improved Oil Recovery Conference, Tulsa, USA. DOI:10.2118/179648-MS [Google Scholar]
  • Marques M.D., Gaspar A.T., Schiozer D.J. (2013) Use of oil reservoir simulation to estimate value of flexibility, SPE 164878, in: EAGE Annual Conference and Exhibition incorporating Europec, London, United Kingdom. DOI:10.2118/164878-MS [Google Scholar]
  • Maschio C., Schiozer D.J. (2003) A new upscaling technique based on dykstra-parsons coefficient: Evaluation with streamline reservoir simulation, J. Petrol. Sci. Eng. 40, 27–36. DOI:10.1016/S0920-4105(03)00060-3 [CrossRef] [Google Scholar]
  • Maschio C., Schiozer, D.J. (2016) Probabilistic history matching using discrete latin hypercube sampling and nonparametric density estimation, J. Petrol. Sci. Eng. 147, 98–115. DOI:10.1016/j.petrol.2016.05.011 [CrossRef] [Google Scholar]
  • Meira L.A.A., Coelho G.P., Santos A.A.S., Schiozer D.J. (2016) Selection of representative models for decision analysis under uncertainty, Comput. Geosci. 88, 67–82. DOI:10.1016/j.cageo.2015.11.012 [CrossRef] [Google Scholar]
  • Morosov L., Schiozer D.J. (2016) Field development process revealing uncertainty assessment pitfalls, SPE 180094, in: SPE Europec, Vienna, Austria. DOI:10.2118/180094-MS [Google Scholar]
  • Noetinger B., Artus V., Ricard L. (2004) Dynamics of the water-oil front for two-phase, Immiscible flow in heterogeneous porous media, 2-isotropic media, Transp. porous media 56, 3, 305–328 [CrossRef] [Google Scholar]
  • Noetinger B., Artus V., Zargar G. (2005) The future of stochastic and upscaling methods in hydrogeology, Hydrogeol. J. 13, 1, 184–201. DOI:10.1007/s10040-004-0427-0 [CrossRef] [Google Scholar]
  • Oliveira D.F.B., Reynolds A.C., Jansen J.D. (2015) An improved multiscale method for life-cycle production optimization, Comput. Geosci. 19, 6, 1139–1157. DOI:10.1007/s10596-015-9530-7 [CrossRef] [Google Scholar]
  • Pattillo P.D., Payne M.L., Webb T.R., Sharadin J.H. (2003) Application of decision analysis to a deepwater well integrity assessment, OTC 15133, in: Offshore Technology Conference, Houston, USA. DOI:10.4043/15133-MS [Google Scholar]
  • Preux C. (2014) About the use of quality indicators to reduce information loss when performing upscaling, Oil Gas Sci. Technol. 71, 7. DOI:10.2516/ogst/2014023 [CrossRef] [Google Scholar]
  • Preux C., Le Ravalec M., Enchéry G. (2016) Selecting an appropriate upscaled reservoir model based on connectivity analysis, Oil Gas Sci. Technol. 71, 60. DOI:10.2516/ogst/2016015 [CrossRef] [Google Scholar]
  • Ravenne C., Galli A., Doligez B., Beucher H., Eschard R. (2002) Quantification of facies relationships via proportion curves, in: Geostatistics Rio 2000: Proceedings of the Geostatistics Sessions of the 31st International Geological Congress, Rio de Janeiro. DOI:10.1007/978-94-017-1701-4 [Google Scholar]
  • Romeu R.K., Noetinger B. (1995) Calculation of internodal transmissivities in finite difference models of flow in heterogeneous porous media, Water Resour. Res. 31, 4, 943–959 [CrossRef] [Google Scholar]
  • Santos S.M.G., Gaspar A.T.F.S., Schiozer D.J. (2017) Value of information in reservoir development projects: Technical indicators to prioritize uncertainties and information sources, J. Petrol. Sci. Eng. 157, 1179–1191. DOI:10.1016/j.petrol.2017.08.028 [CrossRef] [Google Scholar]
  • Sarma P., Chen W.H., Xie J. (2013) Selecting representative models from a large set of models, SPE 163671, in: SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA. DOI:10.2118/163671-MS [Google Scholar]
  • Schiozer D.J., Ligero E.L., Suslick S.B., Costa A.P.A., Santos J.A.M. (2004) Use of representative models in the integration of risk analysis and production strategy definition, J. Petrol. Sci. Eng. 44, 1, 131–141. DOI:10.1016/j.petrol.2004.02.010 [CrossRef] [Google Scholar]
  • Schiozer D.J., Santos A.A.S., Drumond P.S. (2015) Integrated model based decision analysis in twelve steps applied to petroleum fields development and management, SPE 174370, in: Europec 2015, Madrid, Spain. DOI:10.2118/174370-MS [Google Scholar]
  • Schiozer D.J., Avansi G.D., Santos A.A.S. (2017) Risk quantification combining geostatistical realizations and discretized latin hypercube, J. Braz. Soc. Mech. Sci. Eng. 39, 2, 575–587 [CrossRef] [Google Scholar]
  • Schuyler J., Nieman T. (2007) Optimizer's curse: Removing the effect of this bias in portfolio planning, SPE 107852, in: SPE Hydrocarbon Economics and Evaluation Symposium, Dallas, Texas, USA. DOI:10.2118/107852-MS [Google Scholar]
  • Seifert D., Jensen J.L. (1999) Using sequential indicator simulation as a tool in reservoir description: Issues and uncertainties, Math. Geol. 31, 5, 527–550. DOI:10.1023/a:1007563907124 [CrossRef] [Google Scholar]
  • Shirangi M.G., Durlofsky L.J. (2015) Closed-Loop field development under uncertainty by use of optimization with sample validation, SPE 173219-PA, SPE J. 20, 5, 908–922. DOI:10.2118/173219-PA [CrossRef] [Google Scholar]
  • Smith J.E., Winkler R.L. (2006) The optimizer's curse: Skepticism and postdecision surprise in decision analysis, Manag. Sci. 52, 3, 311–322. DOI:10.1287/mnsc.1050.0451 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.