Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 32
Number of page(s) 12
DOI https://doi.org/10.2516/ogst/2018028
Published online 21 September 2018
  • Robert A., Richard S., Colin O., Martinez L., De Francqueville L. (2015) LES prediction and analysis of knocking combustion in a spark ignition engine, Proc. Combust. Inst. 35, 3, 2941–2948. [Google Scholar]
  • Pera C., Knop V., Chevillard S., Reveillon J. (2013) Effects of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines, Combust. Flame 160, 1020–1032. [CrossRef] [Google Scholar]
  • Lipatnikov A. (2017) Stratified turbulent flames: Recent advances in understanding the influence of mixture inhomogeneities on premixed combustion and modeling challenges, Progr. Energy Combust. Sci. 62, 87–132. [CrossRef] [Google Scholar]
  • He C., Kuenne G., Yildar E., Van Oijen J., di Mare F., Sadiki A. (2017) Evaluation of the flame propagation within an SI engine using flame imaging and LES, Combust. Theory Model. 21, 1080–1113. [CrossRef] [Google Scholar]
  • Fontanesi S., D’Adamo A., Paltrinieri S., Cantore G., Rutland C. (2013) Assessment of the potential of proper orthogonal decomposition for the analysis of combustion CCV and knock tendency in a high performance engine, SAE Technical Paper 2013-24-0031. [Google Scholar]
  • Fontanesi S., Paltrinieri S., D'Adamo A., Cantore G., Rutland C. (2013) Knock tendency prediction in a high performance engine using LES and tabulated chemistry, SAE Int. J. Fuels Lubr. 6, 1, 98–118. [CrossRef] [Google Scholar]
  • Adomeit P., Lang O., Pischinger S., Aymann R., Graf M., Stapf G. (2007) Analysis of cyclic fluctuations of charge motion and mixture formation in a DISI engine in stratified operation, SAE paper. [Google Scholar]
  • Forte C., Corti E., Bianchi G.M., Falfari S. (2014) RANS CFD 3D methodology for the evaluation of the effects of cycle by cycle variation on knock tendency of a high performance spark ignition engine, SAE paper. [Google Scholar]
  • Moureau V., Lartigue G., Sommerer Y., Angelberger C., Colin O., Poinsot T. (2005) Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids, J. Comput. Phys. 202, 710–736. [CrossRef] [Google Scholar]
  • Truffin K., Angelberger C., Richard S. (2015) Using large-eddy simulation and multivariate analysis to understand the sources of combustion cyclic variability in a spark-ignition engine, Combust. Flame 162, 4371–4390. [CrossRef] [Google Scholar]
  • Garcia M., Riber E., Simonin O., Poinsot T. (2005) Comparison between Euler/Euler and Euler/Lagrange LES approaches for confined bluff-body gas-solid flow predictions, Sixth International Conference on Multiphase-Flow. [Google Scholar]
  • Wehrfritz A., Vuorinen V., Kaario O., Larmi M. (2013) Large Eddy Simulation of high-velocity fuel sprays: studying mesh resolution and breakup model effects for spray A, Atomization Sprays 23, 5, 419–442. [CrossRef] [Google Scholar]
  • Iafrate N., Michel J.B., Cuenot B. (2014) A study of multi-hole gasoline injector spray dynamics using Large Eddy Simulation, ILASS-Europe. [Google Scholar]
  • Marmottant P., Villermaux E. (2004) On spray formation, J. Fluid Mech. 498, 73–111. [NASA ADS] [CrossRef] [Google Scholar]
  • Herrmann M. (2011) On simulating primary atomization using the refined level set grid method, Atomization Sprays 21, 4, 283–301. [CrossRef] [Google Scholar]
  • Lefebvre A.H. (1989) Atomization Sprays, An International Series, Hemisphere Publishing Corporation, Combustion. [Google Scholar]
  • Ueki H., Ishida D., Naganuma M. (2004) Simultaneous measurements of velocity and size of diesel fuel near nozzle orifice by laser 2-focus velocimeter with micro-scale probe volume, THIESEL 2004 Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines. [Google Scholar]
  • Toda H.B., Cabrit O., Balarac S., Bose S., Lee J., Choi H., Nicoud F. (2010) A subgrid-scale model based on singular values for LES in complex geometry, Proceedings of the Summer Program, vol. 192. [Google Scholar]
  • Misdariis A., Robert A., Vermorel O., Richard S., Poinsot T. (2013) Numerical methods and turbulence modeling for LES of piston engines: impact on flow motion and combustion, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69, 1, 83–105. [CrossRef] [EDP Sciences] [Google Scholar]
  • Vermorel O., Richard S., Colin O., Angelberger C., Benkenida A., Veynante D. (2009) Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES, Combust. Flame 156, 1525–1541. [CrossRef] [Google Scholar]
  • Richard S., Colin O., Vermorel O., Benkenida A., Veynante D. (2006) Towards large eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst., 31, 2, 3059–3066. [CrossRef] [MathSciNet] [Google Scholar]
  • Colin O., Truffin K. (2011) A spark ignition model for large eddy simulation based on FSD transport equation (ISSIM-LES), Proc. (Intl.) Comb. Inst. 33, 2, 3097–3104. [CrossRef] [Google Scholar]
  • Granet V., Vermorel O., Lacour C., Enaux B., Dugue Y., Poinsot T. (2012) Large-Eddy Simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine, Combust. Flame 159, 1562–1575. [CrossRef] [Google Scholar]
  • Robert A. (2014) Simulation aux Grandes Echelles des combustions anormales dans les moteurs downsizes a allumage commande, PhD Thesis, INP Toulouse. [Google Scholar]
  • Robert A., Richard S., Colin O., Poinsot T. (2015) LES study of deflagration to detonation mechanisms in a downsized spark-ignition engine, Combust. Flame 162, 2788–2807. [CrossRef] [Google Scholar]
  • Metghalchi M., Keck J. (1980) Laminar burning velocity of propane-air mixtures at high temperature and pressure, Combust. Flame 38, 143–154. [CrossRef] [Google Scholar]
  • Xiouris C., Ye T., Jayachandran J., Egolfopoulos F. (2016) Laminar flame speeds under engine-relevant conditions: uncertainty quantification and minimization in spherically expanding flame experiments, Combust. Flame 163, 270–283. [CrossRef] [Google Scholar]
  • Mannaa O., Mansour M., Roberts W., Chung S. (2015) Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON, Combust. Flame 162, 2311–2321. [CrossRef] [Google Scholar]
  • Charlette F., Meneveau C., Veynante D. (2002) A power-law flame wrinkling model for LES of premixed turbulent combustion Part1: non-dynamic formulation and initial tests, Combust. Flame 131, 1–2, 159–180. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.