- Adib H., Haghbakhsh R., Saeidi M. (2013) Modeling and optimization of Fischere–Tropsch synthesis in the presence of Co (III)/Al2O3 catalyst using artificial neural networks and genetic algorithm, J. Nat. Gas Sci. Eng. 10, 14–24, https://doi.org/10.1016/j.jngse.2012.09.001. [Google Scholar]
- Adib H., Sabet A., Naderifar A., Adib M., Ebrahimzadeh M. (2015) Evolving a prediction model based on machine learning approach for hydrogen sulfide removal from sour condensate of south Pars natural gas processing plant. J. Nat. Gas Sci. Eng. 27, 74–81, http://doi.org/10.1016/j.jngse.2015.08.012. [Google Scholar]
- Agarwal S., Saradhi V.V., Karnick H. (2008) Kernel-based online machine learning and support vector reduction, Neurocomputing 71, 1230–1237, https://doi.org/10.1016/j.neucom.2007.11.023. [Google Scholar]
- Asil A., Shahsavand A. (2014) Reliable estimation of optimal sulfinol concentration in gas treatment unit via novel stabilized MLP and regularization network, J. Nat. Gas Sci. Eng. 21, 791–804, https://doi.org/10.1016/j.jngse.2014.09.033. [Google Scholar]
- Bashipour F., Rahimi A., Nouri Khorasani S., Naderinik A. (2017) Experimental optimization and modeling of sodium sulfide production from H2S-rich off-gas via response surface methodology and artificial neural network, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 9, https://doi.org/10.2516/ogst/2017004. [Google Scholar]
- Chiang L.H., Kotanchek M.E., Kordon A.K. (2004) Fault diagnosis based on Fisher discriminant analysis and support vector machines, Comput. Chem. Eng. 28, 1389–1401, https://doi.org/10.1016/j.compchemeng.2003.10.002. [Google Scholar]
- Cortes C., Vapnik V. (1995) Support-vector networks, Machine Learning 20, 273–297. [Google Scholar]
- Curilem M., Acuña G., Cubillos F., Vyhmeister E. (2011) Neural Networks and Support Vector Machine models applied to energy consumption optimization in semiautogeneous grinding, Chem. Eng. Trans. 25, 761–766, https://doi.org/10.3303/CET1125127. [Google Scholar]
- Ding J., Cao Y., Mpofu E., Shi Z. (2012) A hybrid support vector machine and fuzzy reasoning based fault diagnosis and rescue system for stable glutamate fermentation, Chem. Eng. Res. Des., 90, 1197–1207, https://doi.org/10.1016/j.cherd.2012.01.004. [Google Scholar]
- Eslamimanesh A., Gharagheizib F., Illbeigi M., Mohammadi A.H., Fazlali A., Richon D. (2012) Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen + water soluble organic promoters using Support Vector Machine algorithm, Fluid. Phase. Equilibria. 316, 34–45, https://doi.org/10.1016/j.proeng.2016.06.455. [Google Scholar]
- Haghbakhsh R., Adib H., Keshavarz P., Koolivand M., Keshtkari S. (2012) Development of an artificial neural network model for the prediction of hydrocarbon density at high-pressure, high-temperature conditions, Thermochim. Acta 551, 124–130, https://doi.org/10.1016/j.tca.2012.10.022. [Google Scholar]
- Kulkarni A., Jayaraman V.K., Kulkarni B.D. (2005) Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process, Comput. Chem. Eng. 29, 2128–2133, https://doi.org/10.1016/j.compchemeng.2005.06.006. [Google Scholar]
- Magné-Drisch J., Gazarian J., Gonnard S., Schweitzer J.M., Chiche D., Laborie G., Perdu G. (2016) COSWEETTM: a new process to reach very high COS specification on natural gas treatment combined with selective H2S removal, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 71, 40, https://doi.org/10.2516/ogst/2015038. [CrossRef] [Google Scholar]
- Mahdipoor H., Ashkezari A. (2016) Feasibility study of a sulfur recovery unit containing mercaptans in lean acid gas feed, J. Nat. Gas. Sci. Eng. 31, 585–588, https://doi.org/10.1016/j.jngse.2016.03.045. [Google Scholar]
- Mehdizadeh B., Movagharnejad K. (2011) A comparative study between LS-SVM method and semi empirical equations for modeling the solubility of different solutes in supercritical carbon dioxide, Chem. Eng. Res. Des. 89, 2420–2427, https://doi.org/10.1016/j.cherd.2011.03.017. [Google Scholar]
- Moaseri E., Mostaghisi O., Shahsavand A., Bazubandi B., Karimi K., Ahmadi J. (2013) Experimental study and techno-economical evaluation of Khangiran sour natural gas condensate desulfurization process, J. Nat. Gas Sci. Eng. 12, 34–42, https://doi.org/10.1016/j.jngse.2013.02.001. [Google Scholar]
- Moradi N., Adib H., Sabet A., Adhami M., Adib M. (2016) Toward an intelligent approach for H2S content and vapor pressure of sour condensate of south Pars natural gas processing plant, J. Nat. Gas Sci. Eng. 28, 365–371, https://doi.org/10.1016/j.jngse.2015.12.006. [Google Scholar]
- Pelckmans K., Suykens J.A.K., Van Gestel T., De Brabanter D., Lukas L., Hamers B., De Moor B., Vandewalle J. (2002) LS-SVMlab: a Matlab/C toolbox for least squares support vector machines, KU Leuven, Leuven, Belgium. [Google Scholar]
- Raynal L., Augier F., Bazer-Bachi F., Haroun Y., Pereira da Fonte C. (2016) CFD applied to process development in the oil and gas industry – a review, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 71, 42, https://doi.org/10.2516/ogst/2015019. [CrossRef] [Google Scholar]
- Safadoost A., Davoodi M., Mansoori A. (2014) Preventing corrosion and tube failure in sulfur condenser during normal operation, startup, and shutdown of the south Pars gas processing plant (case study), J. Nat. Gas. Sci. Eng. 19, 105–115, https://doi.org/10.1016/j.jngse.2014.05.003. [Google Scholar]
- Santos J., Lobato A., Cunha A., Silva G., Santos L. (2016) Comparison of different processes for preventing deposition of elemental sulfur in natural gas pipelines: A review, J. Nat. Gas. Sci. Eng. 32, 364–372, https://doi.org/10.1016/j.jngse.2016.04.045. [Google Scholar]
- Sharifi A., Omidbakhsh Amiri E. (2017) Effect of the tower type on the gas sweetening process, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 24, https://doi.org/10.2516/ogst/2017018. [CrossRef] [Google Scholar]
- Suykens J.A.K., Gestel T.V., Brabanter J.D., Moor B.D., Vandewalle J. (2002) Least Squares Support Vector Machines, World Scientific, Singapore. [CrossRef] [Google Scholar]
- Terzica J., Nagarajahb C.R., Alamgira M. (2010) Fluid level measurement in dynamic environments using a single ultrasonic sensor and Support Vector Machine (SVM), Sensor Actuator. 161, 278–287, https://doi.org/10.1016/j.sna.2010.05.005. [CrossRef] [Google Scholar]
- Vapnik V.N. (1998) Statistical Learning Theory, Wiley, New York. [Google Scholar]
- Yélamosa I., Escuderob G., Graells M., Puigjaner L. (2009) Performance assessment of a novel fault diagnosis system based on support vector machines, Comput. Chem. Eng. 33, 244–255, https://doi.org/10.1016/j.compchemeng.2008.08.008. [Google Scholar]
- Zaidi S. (2015) Novel application of support vector machines to model the two phase boiling heat transfer coefficient in a vertical tube thermosiphon reboiler, Chem. Eng. Res. Des. 98, 44–58, https://doi.org/10.1016/j.cherd.2015.04.002. [Google Scholar]
- Zanghirati G., Zanni L. (2003) A parallel solver for large quadratic programs in training support vector machines, Parallel Comput. 29, 535–551, https://doi.org/10.1016/S0167-8191(03)00021-8. [Google Scholar]
- Zhao B. (2009) Modeling pressure drop coefficient for cyclone separators: a support vector machine approach,. Chem. Eng. Sci. 64, 4131–4136, https://doi.org/10.1016/j.ces.2009.06.017. [Google Scholar]
Open Access
Issue |
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
|
|
---|---|---|
Article Number | 70 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.2516/ogst/2018021 | |
Published online | 07 December 2018 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.