Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 29
Number of page(s) 7
Published online 03 September 2018
  • Tákacs G. (2009) Electrical submersible pumps manual: design, operations, and maintenance. Gulf Professional Publishing. [Google Scholar]
  • Varon M.P. (2013) Estudo de uma bomba centrífuga submersa (BCS) como medidor de vazão, Msc Thesis, FEM-UNICAMP, Campinas, Brazil. [Google Scholar]
  • Snyder J.R., Dale R., Joe Haws H. (1989) Pump off/gas lock motor controller for electrical submersible pumps, EP Patent App. EP19,880,202,383, 03 May. [Google Scholar]
  • Klein F.L., Seleghim, Jr. P., Eric H. (2004) Time-frequency analysis of intermittent two-phase flows in horizontal piping, J. Braz. Soc. Mech. Sci. Eng. 26, 2, 174–179. [CrossRef] [Google Scholar]
  • Kolpak M.K., Rock T.J. (1996) Measuring vibration of a fluid stream to determine gas fraction, U.S. Patent No. 5,524,475, 11 June. [Google Scholar]
  • Henry M.P., Richard R.P. (2014) Multiphase flow metering system, U.S. Patent Application No 14/135,085, 19 Dec. [Google Scholar]
  • Nelles O. (2001) Nonlinear system identification, Springer-Verlag, Berlin Heidelberg. [CrossRef] [Google Scholar]
  • Ljung L. (1999) System identification: Theory for the user, Prentice Hall PTR, Upper Saddle River, NJ. [Google Scholar]
  • Dietterich T.G. (1986) Learning at the knowledge level, Mach. Lear. 1, 287–315. [Google Scholar]
  • Rychetsky M. (2001) Algorithms and architectures for machine learning based on regularized neural networks and support vector approaches, Shaker Verlag GmbH, Germany. [Google Scholar]
  • Vapnik V. (1995) The nature of statistical learning theory, Springer-Verlag, New York. [CrossRef] [Google Scholar]
  • Vapnik V., Golowich S., Steven E., Smola A. (1996) Support vector method for function approximation, regression estimation, and signal processing, Advances in Neural Information Processing Systems 9, pp. 281–287. [Google Scholar]
  • Stoean R., Dumitrescu D., Preuss M., Stoean C. (2006) Evolutionary support vector regression machines, in: SYNASC '06 Proceedings of the Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, IEEE Computer Society, Washington, DC, pp. 330–335. [Google Scholar]
  • Zhang H., Yongmei L. (2013) BSP-Based Support Vector Regression Machine Parallel Framework, Computer and Information Science (ICIS), 2013 IEEE/ACIS 12th International Conference on. IEEE, Niigata, Japan, pp. 329–334. [Google Scholar]
  • Yu Q., Liu Y., Rao F. (2009) Parameter selection of support vector regression machine based on differential evolution algorithm. Fuzzy systems and knowledge discovery, de FSKD ’09. Sixth International Conference, pp. 596–598. [Google Scholar]
  • Zhenyue H., Mei C. (2009) Soft sensor modeling using SVR based on genetic algorithm and akaike information criterion, intelligent human-machine systems and cybernetics, Intelligent Human-Machine Systems and Cybernetics, 2009. IHMSC’09. International Conference on, Vol. 2, IEEE. [Google Scholar]
  • Blackman R.B., Tukey J.W. (1959) The measurement of power spectra, Dover publications, New York. [Google Scholar]
  • Michael K. (1996) A bound on the error of cross validation using the approximation and estimation rates, with consequences for the training-test split, Advances in Neural Information Processing Systems, pp. 183–189. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.