Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Number 5, September–October 2017
Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Article Number 26
Number of page(s) 12
Published online 08 September 2017
  • Munasinghe P.C., Khanal S.K. (2010) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations, Biotechnol. Prog. 26, 1616–1621. [CrossRef] [PubMed] [Google Scholar]
  • Huang Q.S., Zhang W.P., Yang C. (2015) Modeling transport phenomena and reactions in a pilot slurry airlift loop reactor for direct coal liquefaction, Chem. Eng. Sci. 135, 441–451. [CrossRef] [Google Scholar]
  • Heijnen J.J., Hols J., van der Lans R.G.J.M., van Leeuwen H.L.J.M., Mulder A., Weltevrede R. (1997) A simple hydrodynamic model for the liquid circulation velocity in a full-scale two- and three-phase internal airlift reactor operating in the gas recirculation regime, Chem. Eng. Sci. 52, 2527–2540. [CrossRef] [Google Scholar]
  • Li G.Q., Yang S.Z., Cai Z.L., Chen J.Y. (1995) Mass transfer and gas-liquid circulation in an airlift reactor with viscous non-Newtonian fluids, Chem. Eng. J. 56, B101–B107. [Google Scholar]
  • Hwang S.J., Cheng Y.L. (1997) Gas holdup and liquid velocity in three-phase internal-loop airlift reactors, Chem. Eng. Sci. 52, 3949–3960. [CrossRef] [Google Scholar]
  • Deng Z.H., Wang T.F., Zhang N., Wang Z.W. (2010) Gas holdup, bubble behavior and mass transfer in a 5 m high internal-loop airlift reactor with non-Newtonian fluid, Chem. Eng. J. 160, 729–737. [CrossRef] [Google Scholar]
  • Han M., González G., Vauhkonen M., Laari A., Koiranen T. (2017) Local gas distribution and mass transfer characteristics in an annulus-rising airlift reactor with non-Newtonian fluid, Chem. Eng. J. 308, 929–939. [CrossRef] [Google Scholar]
  • Gumery F., Ein-Mozaffari F., Dahman Y. (2011) Macromixing hydrodynamic study in draft-tube airlift reactors using electrical resistance tomography, Bioprocess Biosyst. Eng. 34, 135–144. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Chen P., Sanyal J., Dudukovic M.P. (2005) Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures, Chem. Eng. Sci. 60, 1085–1101. [CrossRef] [Google Scholar]
  • Chen P., Sanyal J., Dudukovic M.P. (2004) CFD modeling of bubble columns flows: implementation of population balance, Chem. Eng. Sci. 59, 5201–5207. [CrossRef] [Google Scholar]
  • Wang T.F., Wang J.F., Jin Y. (2005) Population balance model for gas-liquid flows: influence of bubble coalescence and breakup models, Ind. Eng. Chem. Res. 44, 7540–7549. [CrossRef] [Google Scholar]
  • Wang T.F., Wang J.F. (2007) Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model, Chem. Eng. J. 62, 7107–7118. [CrossRef] [Google Scholar]
  • Liu R., Sun W., Liu C.Z. (2011) Computational fluid dynamics modeling of mass transfer behavior in a bioreactor for hairy root culture. I. Model development and experimental validation, Biotechnol. Prog. 27, 1661–1671. [CrossRef] [PubMed] [Google Scholar]
  • Xing C.T., Wang T.F., Wang J.F. (2013) Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column, Chem. Eng. Sci. 95, 313–322. [CrossRef] [Google Scholar]
  • Wang T.F., Wang J.F., Jin Y. (2003) A novel theoretical breakup kernel function for bubbles/drops in a turbulent flow, Chem. Eng. Sci. 58, 4629–4637. [CrossRef] [Google Scholar]
  • Lennartsson P.R., Niklasson C., Taherzadeh M.J. (2011) A pilot study on lignocellulose to ethanol and fish feed using NMMO pretreatment and cultivation with zygomycetes in an air-lift reactor, Bioresour. Tech. 102, 4425–4432. [CrossRef] [Google Scholar]
  • Chavez-Parga M.C., Gonzalez-Ortega O., Negrete-Rodriguez M.L.X., Medina-Torres L., Escamilla-Silva E.M. (2007) Hydrodynamics, mass transfer and rheological studies of gibberellic acid production in an airlift bioreactor, World J. Microb. Biot. 23, 615–623. [CrossRef] [Google Scholar]
  • Chavez-Parga M.C., Gonzalez-Ortega O., Negrete-Rodríguez M.L.X., Vallarino I.G., González Alatorre G., Escamilla-Silva E.M. (2008) Kinetic of the gibberellic acid and bikaverin production in an airlift bioreactor, Process Biochem. 43, 855–860. [CrossRef] [Google Scholar]
  • Eloranta H., Honkanen M., Marjanen K. (2008) PORA-Object recognition and analysis software 1.0 users manual, version 1.0, ©Pixact Ltd., [Google Scholar]
  • Lahey R.T., Lopez de Bertodano M., Jones O.C. (1993) Phase distribution in complex geometry conduits, Nuclear Eng. Des. 141, 177–201. [CrossRef] [Google Scholar]
  • Jakobsen H. (1993) On the modelling and simulation of bubble column reactors using a two-fluid model, PhD Thesis, Norweigian Institute of Technology, Norway, 110. [Google Scholar]
  • Tomiyama A., Kataoka I., Zun I., Sakaguchi T. (1998) Drag coefficients of single bubbles under normal and micro gravity conditions, JSME Int. J. 41, 472–479. [CrossRef] [Google Scholar]
  • Tomiyama A., Tarnai H., Zun I., Hosokama S. (2002) Transverse migration of single bubbles in simple shear flow, Chem. Eng. Sci. 57, 1849–1858. [CrossRef] [Google Scholar]
  • Tomiyama A. (1998) Struggle with computational bubble dynamics, Multiphase Sci. Tech. 10, 369–405. [CrossRef] [Google Scholar]
  • Antal S.P., Lahey R.T., Flaherty J.E. (1991) Analysis of phase distribution in fully developed laminar bubble two-phase flow, Int. J. Multiphase Flow 17, 635–652. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.