Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 3, May–June 2017
Article Number 15
Number of page(s) 14
DOI https://doi.org/10.2516/ogst/2017012
Published online 16 June 2017
  • Borée J., Miles P.C. (2014) In-cylinder flow, in: Crolla D., Foster D., Kobayashi T., Vaughan N. (eds), Encyclopedia of Automotive Engineering, John Wiley & Sons, Ltd. [Google Scholar]
  • Hasse C. (2016) Scale-resolving simulations in engine combustion process design based on a systematic approach for model development, Int. J. Engine Res. 17, 1, 44–62. [Google Scholar]
  • Borée J., Maurel S., Bazile R. (2002) Disruption of a compressed vortex, Phys. Fluids 14, 7, 2543–2556. [CrossRef] [Google Scholar]
  • Hasse C., Sohm V., Durst B. (2009) Detached eddy simulation of cyclic large scale fluctuations in a simplified engine setup, Int. J. Heat Fluid Flow 30, 1, 32–43. [Google Scholar]
  • Buhl S., Gleiss F., Köhler M., Hartmann F., Messig D., Bücker C., Hasse C. (2016) A combined numerical and experimental study of the 3D tumble structure and piston boundary layer development during the intake stroke of a gasoline engine, Flow Turbul. Combust. 98, 579–600. [CrossRef] [Google Scholar]
  • Sjunnesson A., Nelsson C., Max E. (1991) LDA measurements of velocities and turbulence in a bluff body stabilized flame, Laser Anemometry Adv. Appl. 3, 83–90. [Google Scholar]
  • Lyn D., Einav S., Rodi W., Park J. (1995) A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder, J. Fluid Mech. 304, 285–319. [CrossRef] [Google Scholar]
  • Kravchenko A., Moin P. (2000) Numerical studies of flow over a circular cylinder at ReD=3900, Phys. Fluids 12, 2, 403–417. [Google Scholar]
  • Armalyt B., Durst F., Pereira J., Schönung B. (1983) Experimental and theoretical investigation of backward-facing step flow, J. Fluid Mech. 127, 473–496. [Google Scholar]
  • Jovic S., Driver D. (1994) Backward-facing step measurements at low Reynolds number, Reh=5000, Technical report, NASA, USA, Available on https://ntrs.nasa.gov/search.jsp?R=19940028784. [Google Scholar]
  • Le H., Moin P., Kim J. (1997) Direct numerical simulation of turbulent flow over a backward-facing step, J. Fluid Mech. 330, 1, 349–374. [CrossRef] [Google Scholar]
  • Nasr A., Lai J. (1998) A turbulent plane offset jet with small offset ratio, Exp. Fluids 24, 1, 47–57. [CrossRef] [Google Scholar]
  • Assoudi A., Habli S., Saïd N., Bournot H., Le Palec G. (2015) Experimental and numerical study of an offset jet with different velocity and offset ratios, Eng. Appl. Comp. Fluid Mech. 9, 1, 490–512. [Google Scholar]
  • Klein M., Sadiki A., Janicka J. (2003) Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation, Int. J. Heat Fluid Flow 24, 6, 785–794. [CrossRef] [Google Scholar]
  • Amamou A., Habli S., Sad N., Bournot P., Le Palec G. (2015) Numerical study of turbulent round jet in a uniform counterflow using a second order Reynolds stress model, J. Hydro-Environ. Res. 9, 4, 482–495. [CrossRef] [Google Scholar]
  • Lübcke H., Schmidt S., Rung T., Thiele F. (2001) Comparison of LES and RANS in bluff-body flows, J. Wind Eng. Ind. Aerodyn. 89, 14-15, 1471–1485. [CrossRef] [Google Scholar]
  • Catalano P., Wang M., Iaccarino G., Moin P. (2003) Numerical simulation of the flow around a circular cylinder at high Reynolds numbers, Int. J. Heat Fluid Flow 24, 4, 463–469. [Google Scholar]
  • Hasse C., Sohm V., Wetzel M., Durst B. (2009) Hybrid URANS/LES turbulence simulation of vortex shedding behind a triangular flameholder, Flow Turbul. Combust. 83, 1, 1–20. [CrossRef] [Google Scholar]
  • Cavar D., Meyer K. (2012) LES of turbulent jet in cross-flow: part 1-A numerical validation study, Int. J. Heat Fluid Flow 36, 18–34. [CrossRef] [Google Scholar]
  • Akselvoll K., Moin P. (2014) Large eddy simulation of a backward facing step flow, Eng. Turbul. Model. Exp. 2, 303–313. [Google Scholar]
  • Hartmann F., Buhl S., Gleiss F., Barth P., Schild M., Kaiser S.A., Hasse C. (2016) Spatially resolved experimental and numerical investigation of the flow through the intake port of an internal combustion engine, Oil Gas Sci. Technol. – Rev. IFP 71, 1, 2. [CrossRef] [Google Scholar]
  • Freudenhammer D., Baum E., Peterson B., Böhm B., Jung B., Grundmann S. (2014) Volumetric intake flow measurements of an IC engine using magnetic resonance velocimetry, Exp. Fluids 55, 5, 1–18. [CrossRef] [Google Scholar]
  • Voisine M., Thomas L., Borée J., Rey P. (2011) Spatio-temporal structure and cycle to cycle variations of an in-cylinder tumbling flow, Exp. Fluids 50, 5, 1393–1407. [CrossRef] [Google Scholar]
  • Baum E., Peterson B., Böhm B., Dreizler A. (2014) On the validation of LES applied to internal combustion engine flows: part 1: comprehensive experimental database, Flow Turbul. Combust. 92, 1-2, 269–297. [Google Scholar]
  • Zentgraf F., Baum E., Böhm B., Dreizler A., Peterson B. (2016) On the turbulent flow in piston engines: coupling of statistical theory quantities and instantaneous turbulence, Exp. Fluids 28, 4. [Google Scholar]
  • Mi J., Deo R., Nathan G. (2005) Characterization of turbulent jets from high-aspect-ratio rectangular nozzles, Phys. Fluids 17, 6. [Google Scholar]
  • Muppidi S., Mahesh K. (2008) Direct numerical simulation of passive scalar transport in transverse jets, J. Fluid Mech. 598, 335–360. [CrossRef] [MathSciNet] [Google Scholar]
  • Jones E., Oliphant T., Peterson P. (2001) SciPy: open source scientific tools for Python, http://www.scipy.org/. [Google Scholar]
  • Melling A. (1997) Tracer particles and seeding for particle image velocimetry, Meas. Sci. Technol. 8, 12, 1406–1416. [Google Scholar]
  • Freudenhammer D., Peterson B., Ding C., Böhm B., Grundmann S. (2015) The Influence of cylinder head geometry variations on the volumetric intake flow captured by magnetic resonance velocimetry, SAE Int. J. Engine 8, 4, 1826–1836. [Google Scholar]
  • Nicoud F., Toda H., Cabrit O., Bose S., Lee J. (2011) Using singular values to build a subgrid-scale model for large eddy simulations, Phys. Fluids 23, 8. [Google Scholar]
  • Rieth M., Proch F., Stein O., Pettit M., Kempf A. (2014) Comparison of the Sigma and Smagorinsky LES models for grid generated turbulence and a channel flow, Comput. Fluids 99, 172–181. [CrossRef] [Google Scholar]
  • Travin A., Shur M., Strelets M., Spalart P. (2002) Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows, in: Friedrich R., Rodi W. (eds), Advances in LES of Complex Flows, The Netherlands, Springer, pp. 239–254. [Google Scholar]
  • Hasse C., Sohm V., Durst B. (2010) Numerical investigation of cyclic variations in gasoline engines using a hybrid URANS/LES modeling approach, Comput. Fluids 39, 1, 25–48. [Google Scholar]
  • Spalart P., Jou W., Strelets M., Allmaras S. (1997) Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach, Adv. DNS/LES 1, 4–8. [Google Scholar]
  • Wilcox D. (1994) Turbulence modeling for CFD, Vol. 2, DCW Industries Inc, La Canada, California, USA. [Google Scholar]
  • Menter F. (1994) Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J 32, 8, 1598–1605. [Google Scholar]
  • Hanjalié K., Popovac M., Hadžiabdié M. (2004) A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD, Int. J. Heat Fluid Flow 25, 6, 1047–1051. [Google Scholar]
  • Jainski C., Lu L., Dreizler A., Sick V. (2013) High-speed micro particle image velocimetry studies of boundary-layer flows in a direct-injection engine, Int. J. Engine Res. 14, 3, 247–259. [CrossRef] [Google Scholar]
  • Raithby G., Schneider G. (1979) Numerical solution of problems in incompressible fluid flow: treatment of the velocity-pressure coupling, Numer. Heat Transfer 2, 4, 417–440. [Google Scholar]
  • Van Doormaal J., Raithby G. (1984) Enhancements of the simple method for predicting incompressible fluid flows, Numer. Heat Transfer 7, 2, 147–163. [Google Scholar]
  • Raw M. (1996) Robustness of coupled algebraic multigrid for the Navier-Stokes equations, 34th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Reno, NV, USA, Jan. 1996, AIAA Paper 96-0297, p. 297. [Google Scholar]
  • Rhie C., Chow W. (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J 21, 11, 1525–1532. [Google Scholar]
  • Buhl S., Hartmann F., Hasse C. (2016) Identification of large-scale structure fluctuations in IC engines using pod-based conditional averaging, Oil Gas Sci. Technol – Rev. IFP 71, 1, 1. [Google Scholar]
  • Merziger G. (2010) Formeln + Hilfen Höhere Mathematik, Binomi, Barsinghausen, Germany. [Google Scholar]
  • Dierckx P. (1982) Algorithms for smoothing data with periodic and parametric splines, Comput. Graph. Image Process. 20, 2, 171–184. [CrossRef] [Google Scholar]
  • Sforza P., Trentacoste N. (1967) Further experimental results for three-dimensional free jets, AIAA J 5, 5, 885–891. [CrossRef] [Google Scholar]
  • Maurel S., Solliec C. (2001) A turbulent plane jet impinging nearby and far from a flat plate, Exp. Fluids 31, 6, 687–696. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.