Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 3, May–June 2017
Article Number 15
Number of page(s) 14
Published online 16 June 2017
  • Borée J., Miles P.C. (2014) In-cylinder flow, in: Crolla D., Foster D., Kobayashi T., Vaughan N. (eds), Encyclopedia of Automotive Engineering, John Wiley & Sons, Ltd.
  • Hasse C. (2016) Scale-resolving simulations in engine combustion process design based on a systematic approach for model development, Int. J. Engine Res. 17, 1, 44–62. [CrossRef]
  • Borée J., Maurel S., Bazile R. (2002) Disruption of a compressed vortex, Phys. Fluids 14, 7, 2543–2556. [CrossRef]
  • Hasse C., Sohm V., Durst B. (2009) Detached eddy simulation of cyclic large scale fluctuations in a simplified engine setup, Int. J. Heat Fluid Flow 30, 1, 32–43. [CrossRef]
  • Buhl S., Gleiss F., Köhler M., Hartmann F., Messig D., Bücker C., Hasse C. (2016) A combined numerical and experimental study of the 3D tumble structure and piston boundary layer development during the intake stroke of a gasoline engine, Flow Turbul. Combust. 98, 579–600. [CrossRef]
  • Sjunnesson A., Nelsson C., Max E. (1991) LDA measurements of velocities and turbulence in a bluff body stabilized flame, Laser Anemometry Adv. Appl. 3, 83–90.
  • Lyn D., Einav S., Rodi W., Park J. (1995) A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder, J. Fluid Mech. 304, 285–319. [CrossRef]
  • Kravchenko A., Moin P. (2000) Numerical studies of flow over a circular cylinder at ReD=3900, Phys. Fluids 12, 2, 403–417. [CrossRef]
  • Armalyt B., Durst F., Pereira J., Schönung B. (1983) Experimental and theoretical investigation of backward-facing step flow, J. Fluid Mech. 127, 473–496. [CrossRef]
  • Jovic S., Driver D. (1994) Backward-facing step measurements at low Reynolds number, Reh=5000, Technical report, NASA, USA, Available on
  • Le H., Moin P., Kim J. (1997) Direct numerical simulation of turbulent flow over a backward-facing step, J. Fluid Mech. 330, 1, 349–374. [CrossRef]
  • Nasr A., Lai J. (1998) A turbulent plane offset jet with small offset ratio, Exp. Fluids 24, 1, 47–57. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Assoudi A., Habli S., Saïd N., Bournot H., Le Palec G. (2015) Experimental and numerical study of an offset jet with different velocity and offset ratios, Eng. Appl. Comp. Fluid Mech. 9, 1, 490–512.
  • Klein M., Sadiki A., Janicka J. (2003) Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation, Int. J. Heat Fluid Flow 24, 6, 785–794. [CrossRef]
  • Amamou A., Habli S., Sad N., Bournot P., Le Palec G. (2015) Numerical study of turbulent round jet in a uniform counterflow using a second order Reynolds stress model, J. Hydro-Environ. Res. 9, 4, 482–495. [CrossRef]
  • Lübcke H., Schmidt S., Rung T., Thiele F. (2001) Comparison of LES and RANS in bluff-body flows, J. Wind Eng. Ind. Aerodyn. 89, 14-15, 1471–1485. [CrossRef]
  • Catalano P., Wang M., Iaccarino G., Moin P. (2003) Numerical simulation of the flow around a circular cylinder at high Reynolds numbers, Int. J. Heat Fluid Flow 24, 4, 463–469. [CrossRef]
  • Hasse C., Sohm V., Wetzel M., Durst B. (2009) Hybrid URANS/LES turbulence simulation of vortex shedding behind a triangular flameholder, Flow Turbul. Combust. 83, 1, 1–20. [CrossRef]
  • Cavar D., Meyer K. (2012) LES of turbulent jet in cross-flow: part 1-A numerical validation study, Int. J. Heat Fluid Flow 36, 18–34. [CrossRef]
  • Akselvoll K., Moin P. (2014) Large eddy simulation of a backward facing step flow, Eng. Turbul. Model. Exp. 2, 303–313.
  • Hartmann F., Buhl S., Gleiss F., Barth P., Schild M., Kaiser S.A., Hasse C. (2016) Spatially resolved experimental and numerical investigation of the flow through the intake port of an internal combustion engine, Oil Gas Sci. Technol. – Rev. IFP 71, 1, 2. [CrossRef]
  • Freudenhammer D., Baum E., Peterson B., Böhm B., Jung B., Grundmann S. (2014) Volumetric intake flow measurements of an IC engine using magnetic resonance velocimetry, Exp. Fluids 55, 5, 1–18. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Voisine M., Thomas L., Borée J., Rey P. (2011) Spatio-temporal structure and cycle to cycle variations of an in-cylinder tumbling flow, Exp. Fluids 50, 5, 1393–1407. [CrossRef]
  • Baum E., Peterson B., Böhm B., Dreizler A. (2014) On the validation of LES applied to internal combustion engine flows: part 1: comprehensive experimental database, Flow Turbul. Combust. 92, 1-2, 269–297. [CrossRef]
  • Zentgraf F., Baum E., Böhm B., Dreizler A., Peterson B. (2016) On the turbulent flow in piston engines: coupling of statistical theory quantities and instantaneous turbulence, Exp. Fluids 28, 4.
  • Mi J., Deo R., Nathan G. (2005) Characterization of turbulent jets from high-aspect-ratio rectangular nozzles, Phys. Fluids 17, 6.
  • Muppidi S., Mahesh K. (2008) Direct numerical simulation of passive scalar transport in transverse jets, J. Fluid Mech. 598, 335–360. [CrossRef] [MathSciNet]
  • Jones E., Oliphant T., Peterson P. (2001) SciPy: open source scientific tools for Python,
  • Melling A. (1997) Tracer particles and seeding for particle image velocimetry, Meas. Sci. Technol. 8, 12, 1406–1416. [CrossRef]
  • Freudenhammer D., Peterson B., Ding C., Böhm B., Grundmann S. (2015) The Influence of cylinder head geometry variations on the volumetric intake flow captured by magnetic resonance velocimetry, SAE Int. J. Engine 8, 4, 1826–1836. [CrossRef]
  • Nicoud F., Toda H., Cabrit O., Bose S., Lee J. (2011) Using singular values to build a subgrid-scale model for large eddy simulations, Phys. Fluids 23, 8. [CrossRef]
  • Rieth M., Proch F., Stein O., Pettit M., Kempf A. (2014) Comparison of the Sigma and Smagorinsky LES models for grid generated turbulence and a channel flow, Comput. Fluids 99, 172–181. [CrossRef]
  • Travin A., Shur M., Strelets M., Spalart P. (2002) Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows, in: Friedrich R., Rodi W. (eds), Advances in LES of Complex Flows, The Netherlands, Springer, pp. 239–254.
  • Hasse C., Sohm V., Durst B. (2010) Numerical investigation of cyclic variations in gasoline engines using a hybrid URANS/LES modeling approach, Comput. Fluids 39, 1, 25–48. [CrossRef]
  • Spalart P., Jou W., Strelets M., Allmaras S. (1997) Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach, Adv. DNS/LES 1, 4–8.
  • Wilcox D. (1994) Turbulence modeling for CFD, Vol. 2, DCW Industries Inc, La Canada, California, USA.
  • Menter F. (1994) Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J 32, 8, 1598–1605. [CrossRef]
  • Hanjalié K., Popovac M., Hadžiabdié M. (2004) A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD, Int. J. Heat Fluid Flow 25, 6, 1047–1051. [CrossRef]
  • Jainski C., Lu L., Dreizler A., Sick V. (2013) High-speed micro particle image velocimetry studies of boundary-layer flows in a direct-injection engine, Int. J. Engine Res. 14, 3, 247–259. [CrossRef]
  • Raithby G., Schneider G. (1979) Numerical solution of problems in incompressible fluid flow: treatment of the velocity-pressure coupling, Numer. Heat Transfer 2, 4, 417–440. [CrossRef]
  • Van Doormaal J., Raithby G. (1984) Enhancements of the simple method for predicting incompressible fluid flows, Numer. Heat Transfer 7, 2, 147–163. [CrossRef]
  • Raw M. (1996) Robustness of coupled algebraic multigrid for the Navier-Stokes equations, 34th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Reno, NV, USA, Jan. 1996, AIAA Paper 96-0297, p. 297.
  • Rhie C., Chow W. (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J 21, 11, 1525–1532. [NASA ADS] [CrossRef]
  • Buhl S., Hartmann F., Hasse C. (2016) Identification of large-scale structure fluctuations in IC engines using pod-based conditional averaging, Oil Gas Sci. Technol – Rev. IFP 71, 1, 1. [CrossRef] [EDP Sciences]
  • Merziger G. (2010) Formeln + Hilfen Höhere Mathematik, Binomi, Barsinghausen, Germany.
  • Dierckx P. (1982) Algorithms for smoothing data with periodic and parametric splines, Comput. Graph. Image Process. 20, 2, 171–184. [CrossRef]
  • Sforza P., Trentacoste N. (1967) Further experimental results for three-dimensional free jets, AIAA J 5, 5, 885–891. [CrossRef]
  • Maurel S., Solliec C. (2001) A turbulent plane jet impinging nearby and far from a flat plate, Exp. Fluids 31, 6, 687–696. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.