Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 4, Juillet–Août 2016
Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Article Number 56
Number of page(s) 25
DOI https://doi.org/10.2516/ogst/2016008
Published online 09 August 2016
  • Albinali A. (Forthcoming 2016) Analytical Modeling of Fractured Nano-Porous Reservoirs, PhD Dissertation, Colorado School of Mines. [Google Scholar]
  • Barenblatt G.E., Zheltov I.P., Kochina I.N. (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, Journal of Applied Mathematics and Mechanics 24, 5, 1286–1303. [CrossRef] [Google Scholar]
  • Barker J. (1988) A generalized radial flow model for hydraulic tests in fractured rock, Water Resources Research 24, 10, 1796–1804. [CrossRef] [Google Scholar]
  • Berkowitz B., Scher H., Silliman S.E. (2000) Anomalous transport in laboratory-scale, heterogeneous porous media, Water Resources Research 36, 1, 149–158. [CrossRef] [Google Scholar]
  • Camacho-Velázquez R., Fuentes-cruz G., Vásquez-Cruz M. (2008) Decline-Curve Analysis of Fractured Reservoirs with Fractal Geometry, SPE Reservoir Evaluation & Engineering 11, 3, 606–619. [CrossRef] [Google Scholar]
  • Camacho-Velázquez R., Vásquez-Cruz M.A., Fuentes-Cruz G. (2012) Recent Advances in Dynamic Modeling of Naturally Fractured Reservoirs, SPE Latin American and Caribbean Petroleum Engineering Conference, Mexico City, Mexico, April 16-18. [Google Scholar]
  • Caputo M. (1967) Linear Models of Dissipation whose Q is almost Frequency Independent-II, Geophysical Journal 13, 5, 529–539. [NASA ADS] [CrossRef] [Google Scholar]
  • Chang J., Yortsos Y.C. (1990) Pressure transient analysis of fractal reservoirs, SPE Formation Evaluation 5, 1, 31–38. [CrossRef] [Google Scholar]
  • Chen C., Raghavan R. (2015) Transient flow in a linear reservoir for space-time fractional diffusion, Journal of Petroleum Science and Engineering 128, 194–202. [CrossRef] [Google Scholar]
  • de Swaan A. (1976) Analytic Solutions for Determining Naturally Fractured Reservoir Properties by Well Testing, Society of Petroleum Engineers Journal 16, 3, 117–122. [CrossRef] [Google Scholar]
  • de Swaan A., Camacho-Velázquez R., Vásquez-Cruz M. (2012) Interference Tests Analysis in Fractured Formations with a Time-fractional Equation, SPE Latin American and Caribbean Petroleum Engineering Conference, Mexico City, Mexico, April 16-18. [Google Scholar]
  • Holy R. (Forthcoming 2016) Numerical Investigation of 1D Anomalous Diffusion in Fractured Nanoporous Reservoirs, PhD Dissertation, Colorado School of Mines. [Google Scholar]
  • Kazemi H. (1969) Pressure Transient Analysis of Naturally Fractured Reservoirs with Uniform Fracture Distribution, Society of Petroleum Engineers Journal 9, 4, 451–462. [CrossRef] [Google Scholar]
  • Kazemi H., Merrill Jr L.S., Porterfield K.L., Zeman P.R. (1976) Numerical Simulation of Water-Oil Flow in Naturally Fractured Reservoirs, Society of Petroleum Engineers Journal 16, 6, 17–326. [CrossRef] [Google Scholar]
  • Kilbas A.A., Srivastava H.M., Trujillo J.J. (2006) Fractional Integrals and Fractional Derivatives, in Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam. [Google Scholar]
  • Klimek M., Lupa M. (2011) On Reflection Symmetry in Fractional Mechanics, Scientific Research of the Institute of Mathematics and Computer Science 10, 1, 109–121. [Google Scholar]
  • Mandelbort B.B. (1983) The Fractal Geometry of Nature, W.H. Freeman and Company, New York. [Google Scholar]
  • Metzler R., Glockle W.G., Nonnenmacher T.F. (1994) Fractional Model Equation for Anomalous Diffusion, Physica A: Statistical Mechanics and its Applications 211, 1, 13–24. [CrossRef] [Google Scholar]
  • Metzler R., Klafter J. (2000) The Random Walk’s Guide to Anomalous Diffusion: a Fractional Dynamics Approach, Physics reports 339, 1, 1–77. [NASA ADS] [CrossRef] [Google Scholar]
  • Montroll E.W., Weiss G.H. (1965) Random Walks on Lattices II, Journal of Mathematical Physics 6, 2, 167–181. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Murio D.A. (2008) Implicit finite difference approximation for time fractional diffusion equations, Computers and Mathematics with Applications 56, 4, 1138–1145. [CrossRef] [MathSciNet] [Google Scholar]
  • Nelson R.A. (2001) Geologic Analysis of Naturally Fractured Reservoirs, 2nd edn., Gulf Professional Publishing, Woburn. [Google Scholar]
  • Noetinger B., Gautier Y. (1998) Use of the Fourier-Laplace transform and of diagrammatical methods to interpret pumping tests in heterogeneous reservoirs, Advances in Water Resources 21, 7, 581–590. [CrossRef] [Google Scholar]
  • Noetinger B., Estebenet T., Landereau P. (2001) A direct determination of the transient exchange term of fractured media using a continuous time random walk method, Transport in porous media 44, 3, 539–557. [CrossRef] [Google Scholar]
  • Ozkan E., Brown M., Raghavan R., Kazemi H. (2009) Comparison of Fractured Horizontal-Well Performance in Conventional and Unconventional Reservoirs, SPE Western Regional Meeting, San Jose, California, March 24-26. [Google Scholar]
  • Ozkan E. (2011) On Non-Darcy Flow in Porous Media: Modeling Gas Slippage in Nano-pores, SIAM Mathematical & Computational Issues in the Geosciences Meeting, Long Beach, California, March 21-24. [Google Scholar]
  • Ozkan E. (2013) A Discourse on Unconventional Reservoir Engineering – The State of the Art after a Decade, Unconventional Reservoir Engineering Project Consortium Meeting at Colorado School of Mines, Golden, Colorado, Nov. 8-11. [Google Scholar]
  • O’Shaughnessy B., Procaccia I. (1985) Diffusion on Fractals, Physical Review A 32, 5, 3073–3083. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Raghavan R. (2011) Fraction Derivative: Application to Transient Flow, Journal of Petroleum Science and Engineering 80, 1, 7–13. [CrossRef] [Google Scholar]
  • Raghavan R., Chen C. (2013) Fractured-Well Performance under Anomalous Diffusion, SPE Reservoir Evaluation & Engineering 16, 3, 237–254. [CrossRef] [Google Scholar]
  • Redner S. (1989) Superdiffusive Transport Due to Random Velocity Fields, Physica D: Nonlinear Phenomena 38, 1-3, 287–290. [CrossRef] [MathSciNet] [Google Scholar]
  • Roy S., Raju R., Chuang H.F., Cruden B.A., Meyyappan M. (2003) Modeling gas flow through microchannels and nanopores, Journal of Applied Physics 93, 8, 4870–4879. [CrossRef] [Google Scholar]
  • Russian A. (2013) Anomalous Dynamics of Darcy Flow and Diffusion through Heterogeneous Media, PhD Dissertation, Universitat Politècnica de Catalunya. [Google Scholar]
  • Stehfest H. (1970) Numerical Inversion of Laplace Transforms, Communications of the ACM 13, 1, 47–49. [CrossRef] [Google Scholar]
  • Zhang X., Lv M., Crawford J., Young I.M. (2007) The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: Defining the fractional dispersive flux with the Caputo derivatives, Advances in Water Resources 30, 5, 1205–1217. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.