Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 4, Juillet–Août 2016
Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Article Number 55
Number of page(s) 16
DOI https://doi.org/10.2516/ogst/2016007
Published online 23 June 2016
  • Dana E., Skoczylas F. (1999) Gas relative permeability and pore structure of sandstones, International Journal of Rock Mechanics and Mining Sciences 36, 613–625. [CrossRef] [Google Scholar]
  • Dana E., Skoczylas F. (2002) Experimental study of two-phase flow in three sandstones. I. Measuring relative permeabilities during two-phase steady-state experiments, International Journal of Multiphase Flow 28, 1719–1736. [CrossRef] [Google Scholar]
  • Dana E., Skoczylas F. (2002) Experimental study of two-phase flow in three sandstones. II. Capillary pressure curve measurement and relative permeability pore space capillary models, International Journal of Multiphase Flow 28, 1965–1981. [CrossRef] [Google Scholar]
  • Chen W., Liu J., Brue F., Skoczylas F., Davy C.A., Bourbon X., Talandier J. (2012) Water retention and gas relative permeability of two industrial concretes, Cement and Concrete Research 42, 1001–1013. [CrossRef] [Google Scholar]
  • Duan Z., Davy C.A., Agostini F., Jeannin L., Troadec D., Skoczylas F. (2014) Gas recovery potential of sandstones from tight gas reservoirs, International Journal of Rock Mechanics & Mining Sciences 65, 75–85. [CrossRef] [Google Scholar]
  • Chen X.T., Caratini G., Davy C.A., Troadec D., Skoczylas F. (2013) Coupled transport and poro-mechanical properties of a heat-treated mortar under confinement, Cement and Concrete Research 49, 10–20. [CrossRef] [Google Scholar]
  • Davy C.A., Skoczylas F., Barnichon J.D., Lebon P. (2007) Permeability of macro-cracked argillite under confinement: Gas and water testing, Physics and Chemistry of the Earth 32, 667–680. [CrossRef] [Google Scholar]
  • Lion M., Skoczylas F., Ledésert B. (2004) Determination of the main hydraulic and poro-elastic properties of a limestone from Bourgogne, France, International Journal of Rock Mechanics & Mining Sciences 41, 915–925. [CrossRef] [Google Scholar]
  • Nadah J., Bignonnet F., Davy C.A., Skoczylas F., Troadec D., Bakowski S. (2013) Microstructure and poro-mechanical performance of Haubourdin chalk, International Journal of Rock Mechanics & Mining Sciences 58, 149–165. [CrossRef] [Google Scholar]
  • Klinkenberg L.J. (1941) The permeability of porous media to liquids and gases, in API Drilling and Production Practices, New York, 200–213, API 11th mid-year meeting, Tulsa. [Google Scholar]
  • Bignonnet F. (2014) Caractérisation expérimentale et modélisation micromécanique de la perméabilité et de la résistance de roches argileuses, PhD Thesis, Université Paris Est. [Google Scholar]
  • Zaoui A. (2002) Continuum micromechanics: survey, Journal of Engineering Mechanics 128, 808–816. [CrossRef] [Google Scholar]
  • Barthélémy J.-F. (2009) Effective permeability of media with a dense network of long and micro fractures, Transp. Porous Media 76, 153–178. [CrossRef] [Google Scholar]
  • Dormieux L., Kondo D. (2004) Approche micromécanique du couplage perméabilité-endommagement, C. R. Mécanique 332, 135–140. [CrossRef] [Google Scholar]
  • Fokker P. (2001) General anisotropic effective medium theory for the effective permeability of heterogeneous reservoirs, Transport in Porous Media 44, 205–218. [CrossRef] [Google Scholar]
  • Lemarchand E., Davy C.A., Dormieux L., Chen W., Skoczylas F. (2009) Micromechanics contribution to coupled transport and mechanical properties of fractured geomaterials, Transport in porous media 79, 335–358. [CrossRef] [Google Scholar]
  • Lemarchand E., Davy C.A., Dormieux L., Skoczylas F. (2010) Tortuosity effects in coupled advective transport and mechanical properties of fractured geomaterials, Transport in porous media 84, 1–19. [CrossRef] [Google Scholar]
  • Cariou S. (2010) Couplage hydro-mécanique et transfert dans l’argilite de Meuse/Haute-Marne: approches expérimentale et multi-échelle, PhD Thesis, École Nationale des Ponts et Chaussées. [Google Scholar]
  • Dormieux L., Jeannin L., Gland N. (2011) Homogenized models of stress-sensitive reservoir rocks, Int. J. Eng. Science 49, 386–396. [CrossRef] [Google Scholar]
  • Kröner E. (1978) Self-consistent scheme and graded disorder in polycrystal elasticity, Journal of Physics F 8, 2261–2267. [CrossRef] [Google Scholar]
  • Bernard D., Nielsen Ø., Salvo L., Cloetens P. (2005) Permeability assessment by 3D interdentritic flow simulations on microtomography mappings of Al-Cu alloys, Materials Science and Engineering 392, 112–120. [CrossRef] [Google Scholar]
  • Bignonnet F., Dormieux L. (2014) FFT-based bounds on the permeability of complex microstructures, International Journal for Numerical and Analytical Methods in Geomechanics 38, 1707–1723. [CrossRef] [Google Scholar]
  • Jung Y., Torquato S. (2005) Fluid permeabilities of triply periodic minimal surfaces, Physical Review E 72, 056319. [CrossRef] [Google Scholar]
  • Monchiet V., Bonnet G., Lauriat G. (2009) A FFT-based method to compute the permeability induced by a Stokes slip flow through a porous medium, Comptes Rendus de Mécanique 337, 192–197. [CrossRef] [Google Scholar]
  • Nguyen T.K., Monchiet V., Bonnet G. (2013) A Fourier based numerical method for computing the dynamic permeability of periodic porous media, European Journal of Mechanics B/Fluids 37, 90–98. [CrossRef] [MathSciNet] [Google Scholar]
  • Tardif d’Hamonville P., Ern A., Dormieux L. (2007) Finite element evaluation of diffusion and dispersion tensors in periodic porous media with advection, Computational Geosciences 11, 43–58. [CrossRef] [MathSciNet] [Google Scholar]
  • Tölke J., Baldwin C., Mu Y., Derzhi N., Fang Q., Grader A., Dvorkin J. (2010) Computer simulations of fluid flow in sediment: from images to permeability, The Leading Edge 29, 68–74. [CrossRef] [Google Scholar]
  • Wiegmann A. (2007) Computation of the permeability of porous materials from their microstructure by FFF-Stokes, Berichte des Fraunhofer ITWM, 129. [Google Scholar]
  • Dullien F.A.L. (1992) PorousMedia: Fluid Transport and Pore Structure, Number ISBN 978-0-12-223651-8. Academic Press, San Diego, second edition. [Google Scholar]
  • Fredlund D.G., Xing A. (1994) Equations for the soil-water characteristic curve, Can. Geotech. J. 31, 521–532. [CrossRef] [Google Scholar]
  • Mualem Y. (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res. 12, 513–522. [CrossRef] [Google Scholar]
  • van Genuchten M.T. (1980) A closed-form equation for the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44, 892–898. [CrossRef] [Google Scholar]
  • Ene H., Sanchez-Palencia E. (1975) Equations et phénomènes de surface pour l’écoulement dans un modèle de milieu poreux, Journal de Mécanique, 73–108. [Google Scholar]
  • He Z., Dormieux L., Lemarchand E., Kondo D. (2012) A poroelastic model for the effective behavior of granular materials with interface effect, Mechanics Research Communications 43, 41–45. [CrossRef] [Google Scholar]
  • Boutin C. (2000) Study of permeability by periodic and selfconsistent homogenisation, European Journal of Mechanics A/Solids 19, 603–632. [CrossRef] [MathSciNet] [Google Scholar]
  • Happel J. (1958) Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles, AIChE J. 4, 197–201. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.