Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 3, May–June 2016
Article Number 33
Number of page(s) 14
DOI https://doi.org/10.2516/ogst/2015004
Published online 07 August 2015
  • Metz B., Davidson O., de Coninck H., Loos M., Meyer L. (eds) (2005) IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, p. 443. [Google Scholar]
  • Bachu S., Hawkes C., Lawton D., Pooladi-Darvish M., Perkins E. (2009) CCS site characterisation criteria, IEAG Greenhouse Gas R&D Programme (IEAGHG), 2009/10, July 2009. [Google Scholar]
  • Bachu S. (2002) Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space, Energy Conversion and Management 43, 1, 87–102. [CrossRef] [Google Scholar]
  • Nordbotten J.M., Celia M.A., Bachu S., Dahle H.K. (2005) Semianalytical Solution for CO2 Leakage through an Abandoned Well, Environmental Science & Technology 39, 2, 602–611. [CrossRef] [PubMed] [Google Scholar]
  • Shukla R., Ranjith P., Haque A., Choi X. (2010) A review of studies on CO2 sequestration and caprock integrity, Fuel 89, 10, 2651–2664. [CrossRef] [Google Scholar]
  • Celia M., Nordbotten J., Dobossy M., Elliot T., Bandilla K. (2000) Modeling Options to Answer Practical Questions for CO2 Sequestration Operations, Analysis, pp. 1–19. [Google Scholar]
  • Bachu S. (2000) Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change, Energy Conversion and Management 41, 9, 953–970. [CrossRef] [Google Scholar]
  • Ringrose P.S., Corbett P.W.M. (1994) Controls on two-phase fluid flow in heterogeneous sandstones, Geological Society, London, Special Publications 78, 1, 141–150. [CrossRef] [Google Scholar]
  • Benson S.M., Cole D.R. (2008) CO2 Sequestration in Deep Sedimentary Formations, Elements 4, 5, 325–331. [CrossRef] [Google Scholar]
  • Louis L., Baud P., Wong T.-F. (2007) Characterization of pore-space heterogeneity in sandstone by X-ray computed tomography, Geological Society, London, Special Publications 284, 1, 127–146. [CrossRef] [Google Scholar]
  • Krevor S.C.M., Pini R., Li B., Benson S.M. (2011) Capillary heterogeneity trapping of CO2 in a sandstone rock at reservoir conditions, Geophysical Research Letters 38, 15, 1–5. [Google Scholar]
  • Tsakiroglou C.D., Payatakes A.C. (2000) Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis, mercury porosimetry and network simulation, Advances in Water Resources 23, 7, 773–789. [CrossRef] [Google Scholar]
  • Javadpour F. (2008) CO2 Injection in Geological Formations: Determining Macroscale Coefficients from Pore Scale Processes, Transport in Porous Media 79, 1, 87–105. [CrossRef] [Google Scholar]
  • Roberts-Ashby T., Stewart M. (2012) Potential for carbon dioxide sequestration in the Lower Cretaceous Sunniland Formation within the Sunniland Trend of the South Florida Basin, U.S, International Journal of Greenhouse Gas Control 6, 113–125. [CrossRef] [Google Scholar]
  • Thomas M., Stewart M., Trotz M., Cunningham J. (2012) Geochemical modeling of CO2 sequestration in deep, saline, dolomitic-limestone aquifers: Critical evaluation of thermodynamic sub-models, Chemical Geology 306-307, 29–39. [CrossRef] [Google Scholar]
  • Bauer D., Youssef S., Fleury M., Bekri S., Rosenberg E., Vizika O. (2012) Improving the Estimations of Petrophysical Transport Behavior of Carbonate Rocks Using a Dual Pore Network Approach Combined with Computed Microtomography, Transport in Porous Media 94, 2, 505–524. [CrossRef] [Google Scholar]
  • Manrique E., Gurfinkel M., Muci V. (2004) Enhanced Oil Recovery Field Experiences in Carbonate Reservoirs in the United States EOR in U.S. Carbonate Reservoirs, in 25thAnnual Workshop & Symposium Collaborative Project on Enhanced Oil Recovery International Energy Agency, pp. 1–32. [Google Scholar]
  • Owens J. (2009) Indiana Limestone Handbook, 22nd ed., Indiana Limestone Institute of America, Inc., p. 154. [Google Scholar]
  • Al-Awadi M., Clark W.J., Moore W.R., Herron M., Zhang T. (2009) Dolomite: Perspectives on a Perplexing Mineral, Oilfield Review 21, 3, 32–45. [Google Scholar]
  • Eisinger C., Jensen J. (2011) Reservoir Characterization for CO2 Sequestration: Assessing the Potential of the Devonian Carbonate Nisku Formation of Central Alberta, Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 66, 1, 47–65. [CrossRef] [EDP Sciences] [Google Scholar]
  • Galaup S., Liu Y., Cerepi A. (2012) New integrated 2D-3D physical method to evaluate the porosity and microstructure of carbonate and dolomite porous system, Microporous and Mesoporous Materials 154, 175–186. [CrossRef] [Google Scholar]
  • De Boever E., Varloteaux C., Nader F.H., Foubert A., Békri S., Youssef S., Rosenberg E. (2012) Quantification and Prediction of the 3D Pore Network Evolution in Carbonate Reservoir Rocks, Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 67, 1, 161–178. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cerepi A. (2004) Geological control of electrical behaviour and prediction key of transport properties in sedimentary porous systems, Colloids and Surfaces A: Physicochemical and Engineering Aspects 241, 1-3, 281–298. [CrossRef] [Google Scholar]
  • Goldstein J., Newbury D., Joy D., Lyman C., Echlin P., Lifshin E., Sawyer L., Michael J. (2003) Scanning Electron Microscopy and X-Ray Microanalysis, Kluwer Adacemic/Plenum Pulbishers, p. 688. [Google Scholar]
  • Bera B., Gunda N.S.K., Mitra S.K., Vick D. (2012) Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy, Microsc. Microanal. 18, 1, 171–178. [CrossRef] [PubMed] [Google Scholar]
  • Hollis C., Vahrenkamp V., Tull S., Mookerjee A., Taberner C., Huang Y. (2010) Pore system characterisation in heterogeneous carbonates: An alternative approach to widely-used rock-typing methodologies, Marine and Petroleum Geology 27, 4, 772–793. [CrossRef] [Google Scholar]
  • Ioannidis M., Chatzis I. (1993) A mixed-percolation model of capillary hysteresis and entrapment in mercury porosimetry, Journal of colloid and Interface Science 161, 278–291. [CrossRef] [Google Scholar]
  • Lindquist W. (2002) Quantitative analysis of three-dimensional X-ray tomographic images, International Symposium on Optical Science 4503, 103–115. [Google Scholar]
  • Jerram D., Higgins M. (2007) 3D analysis of rock textures: Quantifying igneous microstructures, Elements 3, 4, 239–246. [CrossRef] [Google Scholar]
  • Kalukin A.R., Van Geet M., Swennen R. (2000) Principal components analysis of multienergy X-ray computed tomography of mineral samples, IEEE Transactions on Nuclear Science 47, 5, 1729–1736. [CrossRef] [Google Scholar]
  • Zhu W., Baud P., Wong T. (2010) Micromechanics of cataclastic pore collapse in limestone, Journal of Geophysical Research 115, B4, B04405. [Google Scholar]
  • Sufian A., Russell A.R. (2013) Microstructural pore changes and energy dissipation in Gosford sandstone during pre-failure loading using X-ray CT, International Journal of Rock Mechanics and Mining Sciences 57, 119–131. [CrossRef] [Google Scholar]
  • Blunt M.J., Bijeljic B., Dong H., Gharbi O., Iglauer S., Mostaghimi P., Paluszny A., Pentland C. (2013) Pore-scale imaging and modelling, Advances in Water Resources 51, 197–216. [CrossRef] [Google Scholar]
  • Raoof A., Hassanizadeh S.M. (2012) A new formulation for pore-network modeling of two-phase flow, Water Resources Research 48, 1, W01514. [CrossRef] [Google Scholar]
  • Joekar-Niasar V., Hassanizadeh S.M. (2012) Analysis of Fundamentals of Two-Phase Flow in Porous Media Using Dynamic Pore-Network Models: A Review, Critical Reviews in Environmental Science and Technology 42, 18, 1895–1976. [CrossRef] [Google Scholar]
  • Laroche C., Vizika O. (2005) Two-Phase Flow Properties Prediction from Small-Scale Data Using Pore-Network Modeling, Transport in Porous Media 61, 1, 77–91. [CrossRef] [Google Scholar]
  • Hinebaugh J., Bazylak A. (2011) PEM Fuel Cell Gas Diffusion Layer Modelling of Pore Structure and Predicted Liquid Water Saturation, in American Society of Mechanical Engineers (ASME), 9th International Fuel Cell Science, Engineering and Technology Conference, Washington DC, pp. 1–8. [Google Scholar]
  • Oren P.E., Bakke S., Arntzen O.J. (1998) Extending Predictive Capabilities to Network Models, SPE Journal 3, 4, 324–336. [CrossRef] [Google Scholar]
  • Thauvin F., Mohanty K. (1998) Network Modeling of Non-Darcy Flow Through Porous Media, Transport in Porous Media 31, 1, 19–37. [CrossRef] [Google Scholar]
  • Gharbi O., Blunt M.J. (2012) The impact of wettability and connectivity on relative permeability in carbonates: A pore network modeling analysis, Water Resources Research 48, 12, W12513. [CrossRef] [Google Scholar]
  • Bijeljic B., Mostaghimi P., Blunt M.J. (2013) Insights into non-Fickian solute transport in carbonates, Water Resources Research 49, 5, 2714–2728. [CrossRef] [PubMed] [Google Scholar]
  • Youssef S., Bauer D., Han M., Bekri S., Rosenberg E., Fleury M., Vizika-Kavvadias O. (2008) Pore-Network Models Combined to High Resolution Micro-CT to Assess Petrophysical Properties of Homogenous and Heterogenous Rocks, in International Petroleum Technology Conference, 3-5 Dec., Kuala Lumpur, Malaysia, IPTC-12884. [Google Scholar]
  • Freire‐Gormaly M., Ellis J.S., Bazylak A., MacLean H.L. (2015) Comparing thresholding techniques for quantifying the dual porosity of Indiana Limestone and Pink Dolomite, Microporous and Mesoporous Materials 207, 84–89. [CrossRef] [Google Scholar]
  • Hinebaugh J., Bazylak A. (2010) Condensation in PEM Fuel Cell Gas Diffusion Layers: A Pore Network Modeling Approach, Journal of The Electrochemical Society 157, 10, B1382–B1390. [CrossRef] [Google Scholar]
  • Chen Qing, Yang Xiaoli, Petriu E.M. (2004) Watershed segmentation for binary images with different distance transforms, Proceedings Second International Conference on Creating, Connecting and Collaborating through Computing, Proceedings the 3rd IEEE International Workshop on Haptic, Audio and Visual Environments and their Application, HAVE 2004, pp. 111–116. [Google Scholar]
  • Mkwelo S., De Jager G., Nicolls F. (2003) Watershed-based segmentation of rock scenes and proximity-based classification of watershed regions under uncontrolled lighting conditions, in Proceedings of the 14th Annual Symposium of the Pattern Recognition Association of South Africa PRASA 2003, 27-28 Nov., Langebaan, South Africa, pp. 107–112. [Google Scholar]
  • Zhou Y., Ren H. (2012) Segmentation Method for Rock Particles Image Based on Improved Watershed Algorithm, 2012 International Conference on Computer Science and Service System (CSSS), 11-13 Aug., Nanjing, pp. 347–349. [Google Scholar]
  • Amankwah A., Aldrich C. (2010) Rock image segmentation using watershed with shape markers, 2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–7. [Google Scholar]
  • Thompson K.E., Willson C.S., Zhang W. (2006) Quantitative Computer Reconstruction of Particulate Materials from Microtomography Images, Powder Technology 163, 3, 169–182. [CrossRef] [Google Scholar]
  • Sheppard A.P., Sok R.M., Averdunk H., Robins V.B., Ghous A. (2006) Analysis of Rock Microstructure Using High-Resolution X-Ray Tomography, SCA2006-26, International Symposium of the Society of Core Analyst, 12-16 Sept., Trondheim, Norway, Society of Core Analysts. [Google Scholar]
  • Mostaghimi P., Blunt M.J., Bijeljic B. (2012) Computations of Absolute Permeability on Micro-CT Images, Mathematical Geosciences 45, 1, 103–125. [CrossRef] [Google Scholar]
  • Datos|x (Version 2.0) [Software] (2012) General Electric, Wunstorf, Germany. [Google Scholar]
  • Landrot G., Ajo-Franklin J.B., Yang L., Cabrini S., Steefel C.I. (2012) Measurement of accessible reactive surface area in a sandstone, with application to CO2 mineralization, Chemical Geology 318-319, 7, 113–125. [CrossRef] [Google Scholar]
  • Moon C.J., Whateley M.K.G., Evans A.M. (2006) Introduction to Mineral Exploration, Second Edition, Oxford, UK, Blackwell Publishing Ltd, pp. 499. [Google Scholar]
  • Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. (2012) Fiji: an open-source platform for biological-image analysis, Nature methods 9, 7, 676–682. [CrossRef] [PubMed] [Google Scholar]
  • Otsu N. (1979) A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on System, Man, and Cybernetics 9, 1, 62–66. [CrossRef] [Google Scholar]
  • Valvatne P.H., Blunt M.J. (2004) Predictive pore-scale modeling of two-phase flow in mixed wet media, Water Resources Research 40, 7, 1–21. [CrossRef] [Google Scholar]
  • Ellis J.S., Bazylak A. (2013) Investigation of contact angle heterogeneity on CO2 saturation in brine-filled porous media using 3D pore network models, Energy Conversion and Management 68, 253–259. [CrossRef] [Google Scholar]
  • Silin D., Patzek T.W. (2006) Pore space morphology analysis using maximal inscribed spheres, Physica A 371, 336–360. [CrossRef] [Google Scholar]
  • Bhattad P., Willson C., Thompson K. (2011) Effect of Network Structure on Characterization and Flow Modeling Using X-ray Micro-Tomography Images of Granular and Fibrous Porous Media, Transport in Porous Media 90, 363–392. [CrossRef] [Google Scholar]
  • Dong H., Blunt M. (2009) Pore-network extraction from micro-computerized-tomography images, Physical Review E 80, 3, 1–11. [Google Scholar]
  • Al-Kharusi A.S., Blunt M.J. (2007) Network extraction from sandstone and carbonate pore space images, Journal of Petroleum Science and Engineering 56, 4, 219–231. [CrossRef] [Google Scholar]
  • Jiang Z., Dijke M.I.J., Wu K., Couples G.D., Sorbie K.S., Ma J. (2011) Stochastic Pore Network Generation from 3D Rock Images, Transport in Porous Media 94, 2, 571–593. [CrossRef] [Google Scholar]
  • Silin D., Tomutsa L., Benson S.M., Patzek T.W. (2010) Microtomography and Pore-Scale Modeling of Two-Phase Fluid Distribution, Transport in Porous Media 86, 2, 495–515. [CrossRef] [Google Scholar]
  • Petriu E.M. (2004) Watershed segmentation for binary images with different distance transforms, Proceedings Second International Conference on Creating, Connecting and Collaborating through Computing, pp. 111–116. [Google Scholar]
  • Zhou Y., Ren H. (2012) Segmentation Method for Rock Particles Image Based on Improved Watershed Algorithm, 2012, International Conference on Computer Science and Service System, pp. 347–349. [Google Scholar]
  • Roerdink J.B.T.M., Meijster A. (2001) The Watershed Transform: Definitions, Algorithms and Parallelization Strategies, Fundamenta Informaticae 41, 187–228. [Google Scholar]
  • Alshibli K.A., El-Saidany H.A. (2001) Quantifying Void Ratio in Granular Materials Using Voronoi Tessellation, Journal of Computing in Civil Engineering 15, 3, 232–238. [CrossRef] [Google Scholar]
  • Washburn E.W. (1921) Note on a method of determining the distribution of pore sizes in a porous material, Proceedings of the National Academy of Sciences 7, 115–116. [CrossRef] [PubMed] [Google Scholar]
  • Wilkinson D., Willemsen J. (1983) Invasion percolation: a new form of percolation theory, Journal of Physics A: Mathematical 16, 3365–3376. [CrossRef] [MathSciNet] [Google Scholar]
  • Schmid B., Schindelin J., Cardona A., Longair M., Heisenberg M. (2010) A high-level 3D visualization API for Java and ImageJ, BMC Bioinformatics 11, 274. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.