Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 3, May–June 2016
Article Number 33
Number of page(s) 14
DOI https://doi.org/10.2516/ogst/2015004
Published online 07 August 2015
  • Metz B., Davidson O., de Coninck H., Loos M., Meyer L. (eds) (2005) IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, p. 443.
  • Bachu S., Hawkes C., Lawton D., Pooladi-Darvish M., Perkins E. (2009) CCS site characterisation criteria, IEAG Greenhouse Gas R&D Programme (IEAGHG), 2009/10, July 2009.
  • Bachu S. (2002) Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space, Energy Conversion and Management 43, 1, 87–102. [CrossRef]
  • Nordbotten J.M., Celia M.A., Bachu S., Dahle H.K. (2005) Semianalytical Solution for CO2 Leakage through an Abandoned Well, Environmental Science & Technology 39, 2, 602–611. [CrossRef] [PubMed]
  • Shukla R., Ranjith P., Haque A., Choi X. (2010) A review of studies on CO2 sequestration and caprock integrity, Fuel 89, 10, 2651–2664. [CrossRef]
  • Celia M., Nordbotten J., Dobossy M., Elliot T., Bandilla K. (2000) Modeling Options to Answer Practical Questions for CO2 Sequestration Operations, Analysis, pp. 1–19.
  • Bachu S. (2000) Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change, Energy Conversion and Management 41, 9, 953–970. [CrossRef]
  • Ringrose P.S., Corbett P.W.M. (1994) Controls on two-phase fluid flow in heterogeneous sandstones, Geological Society, London, Special Publications 78, 1, 141–150. [CrossRef]
  • Benson S.M., Cole D.R. (2008) CO2 Sequestration in Deep Sedimentary Formations, Elements 4, 5, 325–331. [CrossRef]
  • Louis L., Baud P., Wong T.-F. (2007) Characterization of pore-space heterogeneity in sandstone by X-ray computed tomography, Geological Society, London, Special Publications 284, 1, 127–146. [CrossRef]
  • Krevor S.C.M., Pini R., Li B., Benson S.M. (2011) Capillary heterogeneity trapping of CO2 in a sandstone rock at reservoir conditions, Geophysical Research Letters 38, 15, 1–5.
  • Tsakiroglou C.D., Payatakes A.C. (2000) Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis, mercury porosimetry and network simulation, Advances in Water Resources 23, 7, 773–789. [CrossRef]
  • Javadpour F. (2008) CO2 Injection in Geological Formations: Determining Macroscale Coefficients from Pore Scale Processes, Transport in Porous Media 79, 1, 87–105. [CrossRef]
  • Roberts-Ashby T., Stewart M. (2012) Potential for carbon dioxide sequestration in the Lower Cretaceous Sunniland Formation within the Sunniland Trend of the South Florida Basin, U.S, International Journal of Greenhouse Gas Control 6, 113–125. [CrossRef]
  • Thomas M., Stewart M., Trotz M., Cunningham J. (2012) Geochemical modeling of CO2 sequestration in deep, saline, dolomitic-limestone aquifers: Critical evaluation of thermodynamic sub-models, Chemical Geology 306-307, 29–39. [CrossRef]
  • Bauer D., Youssef S., Fleury M., Bekri S., Rosenberg E., Vizika O. (2012) Improving the Estimations of Petrophysical Transport Behavior of Carbonate Rocks Using a Dual Pore Network Approach Combined with Computed Microtomography, Transport in Porous Media 94, 2, 505–524. [CrossRef]
  • Manrique E., Gurfinkel M., Muci V. (2004) Enhanced Oil Recovery Field Experiences in Carbonate Reservoirs in the United States EOR in U.S. Carbonate Reservoirs, in 25thAnnual Workshop & Symposium Collaborative Project on Enhanced Oil Recovery International Energy Agency, pp. 1–32.
  • Owens J. (2009) Indiana Limestone Handbook, 22nd ed., Indiana Limestone Institute of America, Inc., p. 154.
  • Al-Awadi M., Clark W.J., Moore W.R., Herron M., Zhang T. (2009) Dolomite: Perspectives on a Perplexing Mineral, Oilfield Review 21, 3, 32–45.
  • Eisinger C., Jensen J. (2011) Reservoir Characterization for CO2 Sequestration: Assessing the Potential of the Devonian Carbonate Nisku Formation of Central Alberta, Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 66, 1, 47–65. [CrossRef] [EDP Sciences]
  • Galaup S., Liu Y., Cerepi A. (2012) New integrated 2D-3D physical method to evaluate the porosity and microstructure of carbonate and dolomite porous system, Microporous and Mesoporous Materials 154, 175–186. [CrossRef]
  • De Boever E., Varloteaux C., Nader F.H., Foubert A., Békri S., Youssef S., Rosenberg E. (2012) Quantification and Prediction of the 3D Pore Network Evolution in Carbonate Reservoir Rocks, Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 67, 1, 161–178. [CrossRef] [EDP Sciences]
  • Cerepi A. (2004) Geological control of electrical behaviour and prediction key of transport properties in sedimentary porous systems, Colloids and Surfaces A: Physicochemical and Engineering Aspects 241, 1-3, 281–298. [CrossRef]
  • Goldstein J., Newbury D., Joy D., Lyman C., Echlin P., Lifshin E., Sawyer L., Michael J. (2003) Scanning Electron Microscopy and X-Ray Microanalysis, Kluwer Adacemic/Plenum Pulbishers, p. 688.
  • Bera B., Gunda N.S.K., Mitra S.K., Vick D. (2012) Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy, Microsc. Microanal. 18, 1, 171–178. [CrossRef] [PubMed]
  • Hollis C., Vahrenkamp V., Tull S., Mookerjee A., Taberner C., Huang Y. (2010) Pore system characterisation in heterogeneous carbonates: An alternative approach to widely-used rock-typing methodologies, Marine and Petroleum Geology 27, 4, 772–793. [CrossRef]
  • Ioannidis M., Chatzis I. (1993) A mixed-percolation model of capillary hysteresis and entrapment in mercury porosimetry, Journal of colloid and Interface Science 161, 278–291. [CrossRef]
  • Lindquist W. (2002) Quantitative analysis of three-dimensional X-ray tomographic images, International Symposium on Optical Science 4503, 103–115.
  • Jerram D., Higgins M. (2007) 3D analysis of rock textures: Quantifying igneous microstructures, Elements 3, 4, 239–246. [CrossRef]
  • Kalukin A.R., Van Geet M., Swennen R. (2000) Principal components analysis of multienergy X-ray computed tomography of mineral samples, IEEE Transactions on Nuclear Science 47, 5, 1729–1736. [CrossRef]
  • Zhu W., Baud P., Wong T. (2010) Micromechanics of cataclastic pore collapse in limestone, Journal of Geophysical Research 115, B4, B04405.
  • Sufian A., Russell A.R. (2013) Microstructural pore changes and energy dissipation in Gosford sandstone during pre-failure loading using X-ray CT, International Journal of Rock Mechanics and Mining Sciences 57, 119–131. [CrossRef]
  • Blunt M.J., Bijeljic B., Dong H., Gharbi O., Iglauer S., Mostaghimi P., Paluszny A., Pentland C. (2013) Pore-scale imaging and modelling, Advances in Water Resources 51, 197–216. [CrossRef]
  • Raoof A., Hassanizadeh S.M. (2012) A new formulation for pore-network modeling of two-phase flow, Water Resources Research 48, 1, W01514. [CrossRef]
  • Joekar-Niasar V., Hassanizadeh S.M. (2012) Analysis of Fundamentals of Two-Phase Flow in Porous Media Using Dynamic Pore-Network Models: A Review, Critical Reviews in Environmental Science and Technology 42, 18, 1895–1976. [CrossRef]
  • Laroche C., Vizika O. (2005) Two-Phase Flow Properties Prediction from Small-Scale Data Using Pore-Network Modeling, Transport in Porous Media 61, 1, 77–91. [CrossRef]
  • Hinebaugh J., Bazylak A. (2011) PEM Fuel Cell Gas Diffusion Layer Modelling of Pore Structure and Predicted Liquid Water Saturation, in American Society of Mechanical Engineers (ASME), 9th International Fuel Cell Science, Engineering and Technology Conference, Washington DC, pp. 1–8.
  • Oren P.E., Bakke S., Arntzen O.J. (1998) Extending Predictive Capabilities to Network Models, SPE Journal 3, 4, 324–336. [CrossRef]
  • Thauvin F., Mohanty K. (1998) Network Modeling of Non-Darcy Flow Through Porous Media, Transport in Porous Media 31, 1, 19–37. [CrossRef]
  • Gharbi O., Blunt M.J. (2012) The impact of wettability and connectivity on relative permeability in carbonates: A pore network modeling analysis, Water Resources Research 48, 12, W12513. [CrossRef]
  • Bijeljic B., Mostaghimi P., Blunt M.J. (2013) Insights into non-Fickian solute transport in carbonates, Water Resources Research 49, 5, 2714–2728. [CrossRef] [PubMed]
  • Youssef S., Bauer D., Han M., Bekri S., Rosenberg E., Fleury M., Vizika-Kavvadias O. (2008) Pore-Network Models Combined to High Resolution Micro-CT to Assess Petrophysical Properties of Homogenous and Heterogenous Rocks, in International Petroleum Technology Conference, 3-5 Dec., Kuala Lumpur, Malaysia, IPTC-12884.
  • Freire‐Gormaly M., Ellis J.S., Bazylak A., MacLean H.L. (2015) Comparing thresholding techniques for quantifying the dual porosity of Indiana Limestone and Pink Dolomite, Microporous and Mesoporous Materials 207, 84–89. [CrossRef]
  • Hinebaugh J., Bazylak A. (2010) Condensation in PEM Fuel Cell Gas Diffusion Layers: A Pore Network Modeling Approach, Journal of The Electrochemical Society 157, 10, B1382–B1390. [CrossRef]
  • Chen Qing, Yang Xiaoli, Petriu E.M. (2004) Watershed segmentation for binary images with different distance transforms, Proceedings Second International Conference on Creating, Connecting and Collaborating through Computing, Proceedings the 3rd IEEE International Workshop on Haptic, Audio and Visual Environments and their Application, HAVE 2004, pp. 111–116.
  • Mkwelo S., De Jager G., Nicolls F. (2003) Watershed-based segmentation of rock scenes and proximity-based classification of watershed regions under uncontrolled lighting conditions, in Proceedings of the 14th Annual Symposium of the Pattern Recognition Association of South Africa PRASA 2003, 27-28 Nov., Langebaan, South Africa, pp. 107–112.
  • Zhou Y., Ren H. (2012) Segmentation Method for Rock Particles Image Based on Improved Watershed Algorithm, 2012 International Conference on Computer Science and Service System (CSSS), 11-13 Aug., Nanjing, pp. 347–349.
  • Amankwah A., Aldrich C. (2010) Rock image segmentation using watershed with shape markers, 2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–7.
  • Thompson K.E., Willson C.S., Zhang W. (2006) Quantitative Computer Reconstruction of Particulate Materials from Microtomography Images, Powder Technology 163, 3, 169–182. [CrossRef]
  • Sheppard A.P., Sok R.M., Averdunk H., Robins V.B., Ghous A. (2006) Analysis of Rock Microstructure Using High-Resolution X-Ray Tomography, SCA2006-26, International Symposium of the Society of Core Analyst, 12-16 Sept., Trondheim, Norway, Society of Core Analysts.
  • Mostaghimi P., Blunt M.J., Bijeljic B. (2012) Computations of Absolute Permeability on Micro-CT Images, Mathematical Geosciences 45, 1, 103–125. [CrossRef]
  • Datos|x (Version 2.0) [Software] (2012) General Electric, Wunstorf, Germany.
  • Landrot G., Ajo-Franklin J.B., Yang L., Cabrini S., Steefel C.I. (2012) Measurement of accessible reactive surface area in a sandstone, with application to CO2 mineralization, Chemical Geology 318-319, 7, 113–125. [CrossRef]
  • Moon C.J., Whateley M.K.G., Evans A.M. (2006) Introduction to Mineral Exploration, Second Edition, Oxford, UK, Blackwell Publishing Ltd, pp. 499.
  • Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. (2012) Fiji: an open-source platform for biological-image analysis, Nature methods 9, 7, 676–682. [CrossRef] [PubMed]
  • Otsu N. (1979) A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on System, Man, and Cybernetics 9, 1, 62–66. [CrossRef]
  • Valvatne P.H., Blunt M.J. (2004) Predictive pore-scale modeling of two-phase flow in mixed wet media, Water Resources Research 40, 7, 1–21. [CrossRef]
  • Ellis J.S., Bazylak A. (2013) Investigation of contact angle heterogeneity on CO2 saturation in brine-filled porous media using 3D pore network models, Energy Conversion and Management 68, 253–259. [CrossRef]
  • Silin D., Patzek T.W. (2006) Pore space morphology analysis using maximal inscribed spheres, Physica A 371, 336–360. [CrossRef]
  • Bhattad P., Willson C., Thompson K. (2011) Effect of Network Structure on Characterization and Flow Modeling Using X-ray Micro-Tomography Images of Granular and Fibrous Porous Media, Transport in Porous Media 90, 363–392. [CrossRef]
  • Dong H., Blunt M. (2009) Pore-network extraction from micro-computerized-tomography images, Physical Review E 80, 3, 1–11.
  • Al-Kharusi A.S., Blunt M.J. (2007) Network extraction from sandstone and carbonate pore space images, Journal of Petroleum Science and Engineering 56, 4, 219–231. [CrossRef]
  • Jiang Z., Dijke M.I.J., Wu K., Couples G.D., Sorbie K.S., Ma J. (2011) Stochastic Pore Network Generation from 3D Rock Images, Transport in Porous Media 94, 2, 571–593. [CrossRef]
  • Silin D., Tomutsa L., Benson S.M., Patzek T.W. (2010) Microtomography and Pore-Scale Modeling of Two-Phase Fluid Distribution, Transport in Porous Media 86, 2, 495–515. [CrossRef]
  • Petriu E.M. (2004) Watershed segmentation for binary images with different distance transforms, Proceedings Second International Conference on Creating, Connecting and Collaborating through Computing, pp. 111–116.
  • Zhou Y., Ren H. (2012) Segmentation Method for Rock Particles Image Based on Improved Watershed Algorithm, 2012, International Conference on Computer Science and Service System, pp. 347–349.
  • Roerdink J.B.T.M., Meijster A. (2001) The Watershed Transform: Definitions, Algorithms and Parallelization Strategies, Fundamenta Informaticae 41, 187–228.
  • Alshibli K.A., El-Saidany H.A. (2001) Quantifying Void Ratio in Granular Materials Using Voronoi Tessellation, Journal of Computing in Civil Engineering 15, 3, 232–238. [CrossRef]
  • Washburn E.W. (1921) Note on a method of determining the distribution of pore sizes in a porous material, Proceedings of the National Academy of Sciences 7, 115–116. [CrossRef] [PubMed]
  • Wilkinson D., Willemsen J. (1983) Invasion percolation: a new form of percolation theory, Journal of Physics A: Mathematical 16, 3365–3376. [CrossRef] [MathSciNet]
  • Schmid B., Schindelin J., Cardona A., Longair M., Heisenberg M. (2010) A high-level 3D visualization API for Java and ImageJ, BMC Bioinformatics 11, 274. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.