Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 3, May–June 2015
Page(s) 511 - 519
DOI https://doi.org/10.2516/ogst/2013114
Published online 17 December 2013
  • Owen N.A., Inderwildi O.R., King D.A. (2010) The status of conventional world oil reserves-Hype or cause for concern? Energy Policy 38, 8, 4743–4749. [CrossRef]
  • Sorrell S., Speirs J., Bentley R., Brandt A., Miller R. (2010) Global oil depletion: A review of the evidence, Energy Policy 38, 9, 5290–5295. [CrossRef]
  • Casci J.L., Lok C.M., Shannon M.D. (2009) Fischer–Tropsch catalysis: The basis for an emerging industry with origins in the early 20th Century, Catal. Today 145, 1-2, 38–44. [CrossRef]
  • James O.O., Mesubi A.M., Ako T.C., Maity S. (2010) Increasing carbon utilization in Fischer–Tropsch synthesis using H2-deficient or CO2-rich syngas feeds, Fuel Process. Technol. 91, 2, 136–144. [CrossRef]
  • Buzcu-Guven B., Harriss R. (2012) Extent, impacts and remedies of global gas flaring and venting, Carbon Manage. 3, 1, 95–108. [CrossRef]
  • Buping B., El-Halwagi M.M., Elbashir N.O. (2010) Simulation, integration, and economic analysis of gas-to-liquid processes, Fuel Process. Technol. 91, 7, 703–713. [CrossRef]
  • Zhang Q., Kang J., Wang Y. (2010) Development of Novel Catalysts for Fischer–Tropsch Synthesis: Tuning the Product Selectivity, ChemCatChem 2, 9, 1030–1058. [CrossRef]
  • Davis B.H. (2007) Fischer−Tropsch Synthesis: Comparison of Performances of Iron and Cobalt Catalysts, Ind. Eng. Chem. Res. 46, 26, 8938–8945. [CrossRef]
  • de Klerk A. (2009) Can Fischer−Tropsch Syncrude Be Refined to On-Specification Diesel Fuel?, Energy Fuels 23, 9, 4593–4604. [CrossRef]
  • James O.O., Chowdhury B., Mesubi A.M., Maity S. (2012) Reflections on Chemistry of Fischer-Tropsch Synthesis, RSC Advances 2, 7347–7366. [CrossRef]
  • Li S., Krishnamoorthy S., Li A., Meitzner G.D., Iglesia E. (2002) Promoted Iron-Based Catalysts for the Fischer–Tropsch Synthesis: Design, Synthesis, Site Densities, and Catalytic Properties, J. Catal. 206, 2, 202–217. [CrossRef]
  • Fujiwara M., Kieffer R., Ando H., Xu Q., Souma Y. (1997) Change of catalytic properties of Fe-ZnO/zeolite composite catalyst in the hydrogenation of carbon dioxide, Appl. Catal. A: Gen. 154, 1, 87–101. [CrossRef]
  • Bai Rongxian, Tan Yisheng, Han Yizhuo (2004) Study on the carbon dioxide hydrogenation to iso-alkanes over Fe–Zn–M/zeolite composite catalysts, Fuel Process. Technol. 86, 3, 293–301. [CrossRef]
  • Ni X., Tan Y., Han Y., Tsubaki N. (2007) Synthesis of isoalkanes over Fe–Zn–Zr/HY composite catalyst through carbon dioxide hydrogenation, Catal. Commun. 8, 1711–1714. [CrossRef]
  • Li S., Li A., Krishnamoorthy S., Iglesia E. (2001) Effects of Zn, Cu, and K Promoters on the Structuure and on Reaction and Carburization, and Catalytic Behavior of Iorn-Based Fischer-Tropsch Synthesis Catalysts, Catal. Lett. 77, 4, 197–205. [CrossRef]
  • Lohitharn N., Goodwin Jr. J.G., Lotero E. (2008) Fe-based Fischer–Tropsch synthesis catalysts containing carbide-forming transition metal promoters, J. Catal. 255, 1, 104–113. [CrossRef]
  • Lohitharn N., Goodwin Jr. J.G. (2008) Impact of Cr, Mn and Zr addition on Fe Fischer–Tropsch synthesis catalysis: Investigation at the active site level using SSITKA, J. Catal. 257, 1, 142–151. [CrossRef]
  • Ojeda M., Nabar R., Nilekar A.U., Ishikawa A., Mavrikakis M., Iglesia E. (2010) CO activation pathways and the mechanism of Fischer–Tropsch synthesis, J. Catal. 272, 287–297. [CrossRef]
  • Stephan D.W. (2008) “Frustrated Lewis pairs”: a concept for new reactivity and catalysis, Org. Biomol. Chem. 6, 1535–1539. [CrossRef] [PubMed]
  • Kanzawa A., Arai Y. (1981) Thermal energy storage by the chemical reaction augmentation of heat transfer and thermal decomposition in the CaO/Ca(OH)2 powder, Sol. Energy 27, 4, 289–294. [CrossRef]
  • Alfonso D.R., Jaffe J.E., Hess A.C., Gutowski M. (2003) Formation of the c(1×1) Cu monolayer on CaO(100): A theoretical study, Phys. Rev. B 68, 155411. [CrossRef]
  • Luo M., Davis B.H. (2003) Fischer–Tropsch synthesis: Group II alkali-earth metal promoted catalysts, Appl. Catal. A: Gen. 246, 171–181. [CrossRef]
  • Nakhaei Pour A., Housaindokht M.R., Tayyari S.F., Zarkesh J., Alaei M.R. (2010) Kinetic studies of the Fischer-Tropsch synthesis over La, Mg and Ca promoted nano-structured iron catalyst, J. Nat. Gas Sci. Eng. 2, 61–68. [CrossRef]
  • Nakhaei Pour A., Kamali Shahri S.M., Reza Bozorgzadeh H., Zamani Y., Tavasoli A., Ahmadi Marvast M. (2008) Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer–Tropsch synthesis, Appl. Catal. A: Gen. 348, 2, 201–208. [CrossRef]
  • Shanmugam Yuvaraj, Lin Fan-Yuan, Chang Tsong-Huei, Yeh Chuin-Tih (2003) Thermal Decomposition of Metal Nitrates in Air and Hydrogen Environments, J. Phys. Chem. B 107, 1044–1047. [CrossRef]
  • Brockner W., Ehrhardt C., Gjikaj M. (2007) Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2∙6H2O, in comparison to Co(NO3)2∙6H2O and Ca(NO3)2∙4H2O, Thermochimica Acta 456, 64–68. [CrossRef]
  • Tao Zhichao, Yang Yong, Zhang Chenghua, Li Tingzhen, Wang Jianhua, Wan Haijun, Xiang Hongwei, Li Yongwang (2006) Effect of calcium promoter on a precipitated iron–manganese catalyst for Fischer–Tropsch synthesis, Catal. Commun. 7, 1061–1066. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.