Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 3, May–June 2015
Page(s) 511 - 519
DOI https://doi.org/10.2516/ogst/2013114
Published online 17 December 2013
  • Owen N.A., Inderwildi O.R., King D.A. (2010) The status of conventional world oil reserves-Hype or cause for concern? Energy Policy 38, 8, 4743–4749. [CrossRef] [Google Scholar]
  • Sorrell S., Speirs J., Bentley R., Brandt A., Miller R. (2010) Global oil depletion: A review of the evidence, Energy Policy 38, 9, 5290–5295. [CrossRef] [Google Scholar]
  • Casci J.L., Lok C.M., Shannon M.D. (2009) Fischer–Tropsch catalysis: The basis for an emerging industry with origins in the early 20th Century, Catal. Today 145, 1-2, 38–44. [CrossRef] [Google Scholar]
  • James O.O., Mesubi A.M., Ako T.C., Maity S. (2010) Increasing carbon utilization in Fischer–Tropsch synthesis using H2-deficient or CO2-rich syngas feeds, Fuel Process. Technol. 91, 2, 136–144. [CrossRef] [Google Scholar]
  • Buzcu-Guven B., Harriss R. (2012) Extent, impacts and remedies of global gas flaring and venting, Carbon Manage. 3, 1, 95–108. [CrossRef] [Google Scholar]
  • Buping B., El-Halwagi M.M., Elbashir N.O. (2010) Simulation, integration, and economic analysis of gas-to-liquid processes, Fuel Process. Technol. 91, 7, 703–713. [CrossRef] [Google Scholar]
  • Zhang Q., Kang J., Wang Y. (2010) Development of Novel Catalysts for Fischer–Tropsch Synthesis: Tuning the Product Selectivity, ChemCatChem 2, 9, 1030–1058. [CrossRef] [Google Scholar]
  • Davis B.H. (2007) Fischer−Tropsch Synthesis: Comparison of Performances of Iron and Cobalt Catalysts, Ind. Eng. Chem. Res. 46, 26, 8938–8945. [CrossRef] [Google Scholar]
  • de Klerk A. (2009) Can Fischer−Tropsch Syncrude Be Refined to On-Specification Diesel Fuel?, Energy Fuels 23, 9, 4593–4604. [CrossRef] [Google Scholar]
  • James O.O., Chowdhury B., Mesubi A.M., Maity S. (2012) Reflections on Chemistry of Fischer-Tropsch Synthesis, RSC Advances 2, 7347–7366. [CrossRef] [Google Scholar]
  • Li S., Krishnamoorthy S., Li A., Meitzner G.D., Iglesia E. (2002) Promoted Iron-Based Catalysts for the Fischer–Tropsch Synthesis: Design, Synthesis, Site Densities, and Catalytic Properties, J. Catal. 206, 2, 202–217. [CrossRef] [Google Scholar]
  • Fujiwara M., Kieffer R., Ando H., Xu Q., Souma Y. (1997) Change of catalytic properties of Fe-ZnO/zeolite composite catalyst in the hydrogenation of carbon dioxide, Appl. Catal. A: Gen. 154, 1, 87–101. [CrossRef] [Google Scholar]
  • Bai Rongxian, Tan Yisheng, Han Yizhuo (2004) Study on the carbon dioxide hydrogenation to iso-alkanes over Fe–Zn–M/zeolite composite catalysts, Fuel Process. Technol. 86, 3, 293–301. [CrossRef] [Google Scholar]
  • Ni X., Tan Y., Han Y., Tsubaki N. (2007) Synthesis of isoalkanes over Fe–Zn–Zr/HY composite catalyst through carbon dioxide hydrogenation, Catal. Commun. 8, 1711–1714. [CrossRef] [Google Scholar]
  • Li S., Li A., Krishnamoorthy S., Iglesia E. (2001) Effects of Zn, Cu, and K Promoters on the Structuure and on Reaction and Carburization, and Catalytic Behavior of Iorn-Based Fischer-Tropsch Synthesis Catalysts, Catal. Lett. 77, 4, 197–205. [CrossRef] [Google Scholar]
  • Lohitharn N., Goodwin Jr. J.G., Lotero E. (2008) Fe-based Fischer–Tropsch synthesis catalysts containing carbide-forming transition metal promoters, J. Catal. 255, 1, 104–113. [CrossRef] [Google Scholar]
  • Lohitharn N., Goodwin Jr. J.G. (2008) Impact of Cr, Mn and Zr addition on Fe Fischer–Tropsch synthesis catalysis: Investigation at the active site level using SSITKA, J. Catal. 257, 1, 142–151. [CrossRef] [Google Scholar]
  • Ojeda M., Nabar R., Nilekar A.U., Ishikawa A., Mavrikakis M., Iglesia E. (2010) CO activation pathways and the mechanism of Fischer–Tropsch synthesis, J. Catal. 272, 287–297. [CrossRef] [Google Scholar]
  • Stephan D.W. (2008) “Frustrated Lewis pairs”: a concept for new reactivity and catalysis, Org. Biomol. Chem. 6, 1535–1539. [CrossRef] [PubMed] [Google Scholar]
  • Kanzawa A., Arai Y. (1981) Thermal energy storage by the chemical reaction augmentation of heat transfer and thermal decomposition in the CaO/Ca(OH)2 powder, Sol. Energy 27, 4, 289–294. [CrossRef] [Google Scholar]
  • Alfonso D.R., Jaffe J.E., Hess A.C., Gutowski M. (2003) Formation of the c(1×1) Cu monolayer on CaO(100): A theoretical study, Phys. Rev. B 68, 155411. [CrossRef] [Google Scholar]
  • Luo M., Davis B.H. (2003) Fischer–Tropsch synthesis: Group II alkali-earth metal promoted catalysts, Appl. Catal. A: Gen. 246, 171–181. [CrossRef] [Google Scholar]
  • Nakhaei Pour A., Housaindokht M.R., Tayyari S.F., Zarkesh J., Alaei M.R. (2010) Kinetic studies of the Fischer-Tropsch synthesis over La, Mg and Ca promoted nano-structured iron catalyst, J. Nat. Gas Sci. Eng. 2, 61–68. [CrossRef] [Google Scholar]
  • Nakhaei Pour A., Kamali Shahri S.M., Reza Bozorgzadeh H., Zamani Y., Tavasoli A., Ahmadi Marvast M. (2008) Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer–Tropsch synthesis, Appl. Catal. A: Gen. 348, 2, 201–208. [CrossRef] [Google Scholar]
  • Shanmugam Yuvaraj, Lin Fan-Yuan, Chang Tsong-Huei, Yeh Chuin-Tih (2003) Thermal Decomposition of Metal Nitrates in Air and Hydrogen Environments, J. Phys. Chem. B 107, 1044–1047. [CrossRef] [Google Scholar]
  • Brockner W., Ehrhardt C., Gjikaj M. (2007) Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2∙6H2O, in comparison to Co(NO3)2∙6H2O and Ca(NO3)2∙4H2O, Thermochimica Acta 456, 64–68. [CrossRef] [Google Scholar]
  • Tao Zhichao, Yang Yong, Zhang Chenghua, Li Tingzhen, Wang Jianhua, Wan Haijun, Xiang Hongwei, Li Yongwang (2006) Effect of calcium promoter on a precipitated iron–manganese catalyst for Fischer–Tropsch synthesis, Catal. Commun. 7, 1061–1066. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.