Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 7, December 2014
Page(s) 1201 - 1225
Published online 21 April 2014
  • Benetatos C., Viberti D. (2010) Fully Integrated Hydrocarbon Reservoir Studies: Myth or Reality? American Journal of Applied Sciences 7, 11, 1477–1486, doi: 10.3844/ajassp.2010.1477.1486. [CrossRef]
  • Caers J. (2003) Geostatistical history matching under training-image based geological constraints, SPE Journal 8, 3, 218–226, doi: 10.2118/74716-PA. [CrossRef]
  • Cosentino L. (2001) Integrated Reservoir Studies, Editions Technip, Paris, ISBN 2710811170.
  • Deutsch C.V. (2002) Geostatistical Reservoir Modeling, Oxford University Press, ISBN 0195138066.
  • Evensen G. (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research: Oceans 99, C5, 10143–10162, doi: 10.1029/94JC00572. [CrossRef]
  • Evensen G. (2009) Data assimilation: The ensemble Kalman filter, Springer Verlag, Berlin, ISBN 9783642037115.
  • Hoteit I., Pham D.-T., Triantafyllou G., Korres G. (2008) Particle Kalman Filtering for Data Assimilation in Meteorology and Oceanography, 3rd WCRP International Conference on Reanalysis, Tokyo, Japan, 28 Jan.-1 Feb.
  • Hu L.-Y. (2000) Gradual deformation and iterative calibration of Gaussian-related stochastic models, Mathematical. Geology 32, 1, 87–108, doi: 10.1023/A:1007506918588.
  • Le Ravalec-Dupin M., Da Veiga S. (2011) Cosimulation as a perturbation method for calibrating porosity and permeability fields to dynamic data, Computers & Geosciences 37, 9, doi: 10.1016/j.cageo.2010.10.013. [CrossRef]
  • Mattax C.C., Dalton R.L. (1990) Reservoir Simulation, SPE Monograph Series Vol. 13, Richardson, Texas, USA, SPE, ISBN:978-1-55563-028-7.
  • RamaRao B.S., Lavenue A.M., De Marsily G., Marietta M.G. (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields. Part 1. Theory and computational experiments, Water Resources Research 31, 3, 475–493, doi: 10.1029/94WR02258. [CrossRef]
  • Reynolds A.C., He N., Chu L., Oliver D.S. (1996) Reparameterization Techniques for Generating Reservoir Descriptions Conditioned to Variograms and Well-Test Pressure Data, SPE Journal 1, 4, 413–426, doi: 10.2118/30588-PA. [CrossRef]
  • Selberg S., Ludvigsen B.E., Diab A., Harneshaug T. (2006) New Era of History Matching and Probabilistic Forecasting–A Case Study, SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 24-27 Sept. doi: 10.2118/102349-MS.
  • Schulze-Riegert R.K., Axmann J.K., Haase O., Rian D.T., You Y.-L. (2001) Optimization Methods for History Matching of Complex Reservoir, SPE Reservoir Simulation Symposium, Houston, Texas, 11-14 Feb., doi: 10.2118/66393-MS.
  • Schulze-Riegert R.W., Haase O. (2003) Combined Global and Local Optimization Techniques Applied to History Matching, SPE Reservoir Simulation Symposium, Houston, Texas, 3-5 Feb., doi: 0.2118/79668-MS.
  • Stordal A.S., Karlsen H.A., Nævdal G., Skaug H.J., Vallès B. (2011) Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter, Computational Geosciences 15, 2, 293–305, doi: 10.1007/s10596-010-9207-1. [CrossRef]
  • Stordal A.S., Valestrand R., Karlsen H.A., Nævdal G., Skaug H.J. (2012) Comparing the adaptive Gaussian mixture filter with the ensemble Kalman filter on synthetic reservoir models, Computational Geosciences 16, 2, 467–482, doi: 10.1007/s10596-011-9262-2. [CrossRef]
  • Tavassoli Z., Carter J.N., King P.R. (2004) Errors in History Matching SPE Journal 9, 3, 352–361, doi: 10.2118/86883-PA. [CrossRef]
  • Valestrand R., Nævdal G., Stordal A.S. (2012) Evaluation of EnKF and Variants on the PUNQ-S3 Case, Oil & Gas Science and Technology - Rev, IFP Energies nouvelles 67, 5, 841–855, [CrossRef] [EDP Sciences]
  • Zitzler E. (1999) Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, PhD Thesis, Swiss Federal Institute of Technology, Zurich.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.