Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 7, December 2014
Page(s) 1171 - 1189
DOI https://doi.org/10.2516/ogst/2013146
Published online 04 December 2013
  • Brace W.F., Walsh J.B., Frangos W.T. (1968) Permeability of granite under high pressure, J. Geophys. Res. 73, 2, 2225–2236. [CrossRef] [Google Scholar]
  • Hsieh P.A., Tracy J.V., Neuzil C.E., Bredehoeft J.D., Silliman S.E. (1981) A transient laboratory method for determining the hydraulic properties of tight rocks. I. Theory, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 18, 245–252. [CrossRef] [Google Scholar]
  • Neuzil C.E., Cooley C., Silliman S.E., Bredehoeft J.D., Hsieh P.A. (1981) A transient laboratory method for determining the hydraulic properties of tight rocks. II. Application, Int. J. Roch Mech. Min. Sci. Geomech. Abstr. 18, 253–258. [CrossRef] [Google Scholar]
  • Homand F., Giraud A., Escoffier S., Koriche A., Hoxha D. (2004) Permeability determination of a deep argillite in saturated and partially saturated conditions, Int. J. Heat Mass Trans. 47, 3517–3531. [CrossRef] [Google Scholar]
  • Selvadurai A.P., Letendre A., Hekimi B. (2001) Axial flow hydraulic pulse testing of an argillaceous limestone, Environ. Earth Sci. 64, 2047–2058. [CrossRef] [Google Scholar]
  • Wang H.F. (2003) Theory of linear poroelasticity, Princeton University Press, Princeton and Oxford. [Google Scholar]
  • Adachi J.I., Detournay E. (1997) A poroelastic solution of the oscillating pore pressure method to measure permeabilities of tight rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 34, 3–4, paper 062. [CrossRef] [Google Scholar]
  • Walder J., Nur J. (1986) Permeability measurement by the pulse decay method: effect of poroelastic phenomena and non linear pore pressure diffusion, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 23, 3, 225–232. [CrossRef] [Google Scholar]
  • Giot R., Giraud A., Auvray C., Homand F., Guillon T. (2011) Fully coupled prormechanical back analysis of the pulse test by inverse method, Int. J. Numer. Anal. Methods Geomech. 35, 3, 329–359. [CrossRef] [Google Scholar]
  • Zhang C., Rothfuchs T. (2004) Experimental study of the hydro-mechanical behavior of the Callovo-Oxfordian argillite, Appl. Clay Sci. 26, 325–336. [CrossRef] [Google Scholar]
  • Cariou S., Duan Z., Davy C., Skoczylas F., Dormieux L. (2012) Poromechanics of partially saturated Cox argillite, Appl. Clay Sci. 56, 36–47. [CrossRef] [Google Scholar]
  • Marschall P., Horseman S., Gimmi T. (2005) Characterisation of Gas Transport Properties of the Opalinus Clay, a Potential Host Rock Formation for Radioactive Waste Disposal, Oil Gas Sci. – Technol. Rev. IFP 60, 1, 121–139. [CrossRef] [EDP Sciences] [Google Scholar]
  • Giot R., Giraud A., Guillon T., Auvray C. (2012) Three-dimensional poromechanical back analysis of the pulse test accounting for transverse isotropy, Acta Geotechnica 7, 151–165. [CrossRef] [Google Scholar]
  • Giot R., Giraud A., Homand F. (2005) Three Dimensional modelling of stress relaxation tests with finite element in anisotropic clayey medium: direct problem and back analysis, Geotech. Geol. Eng. 24, 919–947. [CrossRef] [Google Scholar]
  • Alarcon-Ruiz L., Brocato M., Dal Pont S., Feraille A. (2010) Size Effect in Concrete Intrinsic Permeability Measurements, Transport Porous Med. 85, 541–564. [CrossRef] [Google Scholar]
  • Dal Pont S., Schrefler B.A., Ehrlacher A. (2005) Intrinsic Permeability Evolution in High Temperature Concrete: An Experimental and Numerical Analysis, Transport Porous Med. 60, 43–74. [CrossRef] [Google Scholar]
  • Davy C., Skoczylas F., Barnichon J.-D., Lebon P. (2007) Permeability of macro-cracked argillite under confinement: Gas and water testing, Phys. Chem. Earth Parts A/B/C 32, 667–680. [CrossRef] [Google Scholar]
  • Noiret A., Giot R., Bemer E., Giraud A., Homand F. (2011) Hydromechanical behavior of Tournemire argillites: measurement of the poroelastic parameters and estimation of the intrinsic permeability by œdometric tests, Int. J. Numer. Anal. Methods Geomech. 35, 4, 496–518. [CrossRef] [Google Scholar]
  • Cheng A.H.-D. (1997) Material Coefficient of Anisotropic Poroelasticity, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 34, 2, 199–205. [CrossRef] [Google Scholar]
  • Abousleiman Y., Cheng A.H.-D., Cui L., Detournay E., Roegiers J.-C. (1996) Mandel’s problem revisited, Geotechnique 46, 2, 187–195. [CrossRef] [Google Scholar]
  • Abousleiman Y., Cui L. (1998) Poroelastic solutions in transversely isotropic media for wellbore and cylinder, Int. J. Solids Structures 35, 34-35, 4905–4929. [CrossRef] [Google Scholar]
  • Cui L., Abousleiman Y., Cheng A.H.-D., Roegiers J.-C. (1996) Anisotropy effect on one-dimensional consolidation, ASCE, EM 11th conference, FT Lauderdale, FL, May 19-22, pp. 471–474. [Google Scholar]
  • Cui L., Abousleiman Y., Roegiers J.-C. (1998) Solutions for hollow cyclinders in transversely isotropic porous materials, Int. J. Rock Mech. Min. Sci. 35, 4-5, 635–636. [CrossRef] [Google Scholar]
  • Cui L., Cheng A.H.D., Kaliakin V.N., Abousleiman Y., Roegiers J.-C. (1996) Finite element analysis of anisotropic poroelasticity: A generalized Mandel’s problem and an inclined borehole problem, Int. J. Numer. Anal. Methods Geomech. 20, 6, 381–401. [CrossRef] [Google Scholar]
  • Kanj M., Abousleiman Y. (2005) Porothermoelastic analyses of anisotropic hollow cylinders with applications, Int. J. Numer. Anal. Methods Geomech. 29, 2, 103–126. [CrossRef] [Google Scholar]
  • Ekbote S., Abousleiman Y. (2006) Porochemoelastic solution for an inclined borehole in a transversely isotropic formation, J. Eng. Mech. 137, 7, 754–763. [CrossRef] [Google Scholar]
  • Lewis R.W., Schrefler B.A., Simoni L. (1991) Coupling versus uncoupling in soil consolidation, Int. J. Numer. Anal. Methods Geomech. 15, 533–548. [CrossRef] [Google Scholar]
  • Coussy O. (2004) Poromechanics, John Wiley and Sons, Paris, ISBN 0-470-84920-7. [Google Scholar]
  • Detournay E., Cheng A.H.-D. (1993) Fundamentals of poroelasticity, in Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Method, Chapter 5, Fairhurst C. (ed.), Pergamon Press, Oxford, pp. 113–171. [Google Scholar]
  • Schrefler B.A., Gawin D. (1996) The effective stress principle: incremental or finite form? Int. J. Numer. Anal. Methods Geomech. 20, 785–814. [CrossRef] [Google Scholar]
  • Cheng A.H.D. (2008) Abousleiman Y. Intrisic poroelasticity constants and a semilinear model, Int. J. Numer. Anal. Methods Geomech. 32, 7, 803–831. [CrossRef] [Google Scholar]
  • Chavant C. (2001) Modélisations THHM, généralités et algorithmes, Official Documentation of Code_Aster, R7.01.10a, www.code-aster.org. [Google Scholar]
  • Chavant C., Granet S. (2005) Modèles de comportement THHM, Official Documentation of Code_Aster, R7.01.11b, www.code-aster.org. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.