IFP Energies nouvelles International Conference: Colloids 2012 – Colloids and Complex Fluids: Challenges and Opportunities
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 3, May-June 2014
IFP Energies nouvelles International Conference: Colloids 2012 – Colloids and Complex Fluids: Challenges and Opportunities
Page(s) 481 - 497
DOI https://doi.org/10.2516/ogst/2013129
Published online 26 August 2013
  • Abivin P., Hénaut I., Argillier J.-F., Moan M. (2009) Rheological behavior of foamy oils, Energy Fuels 23, 3, 1316–1322. [CrossRef] [Google Scholar]
  • Ahmed R.M., Takach N.E., Khan U.M., James S., Saasen A., Godoy R. (2009) Rheology of foamed cement, Cem. Concr. Res. 39, 4, 353–361. [CrossRef] [Google Scholar]
  • Barnea E., Mizrahi J. (1973) A generalized approach to the fluid dynamics of particulate systems: Part 1. General correlation for fluidization and sedimentation in solid multiparticle systems, Chem. Eng. J. 5, 2, 171–189. [CrossRef] [Google Scholar]
  • Berli C.L.A., Quemada D. (2000) Prediction of the interaction potential of microgel particles from rheometric data. Comparison with different models, Langmuir 16, 26, 10509–10514. [CrossRef] [Google Scholar]
  • Camarasa E., Vial C., Poncin S., Wild G., Midoux N., Bouillard J. (1999) Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column, Chem. Eng. Process. 38, 4-6, 329–344. [CrossRef] [Google Scholar]
  • Chaumat H., Billet A.M., Delmas H. (2007) Hydrodynamics and mass transfer in bubble columns: Influence of liquid phase surface tension, Chem. Eng. Sci. 62, 24, 7378–7390. [CrossRef] [Google Scholar]
  • Choi S.J., Schowalter W.R. (1975) Rheological properties of nondilute suspensions of deformable particles, Phys. Fluids 18, 4, 420–427. [CrossRef] [Google Scholar]
  • Denkov N.D., Subramanian V., Gurovich D., Lips A. (2005) Wall slip and viscous dissipation in sheared foams: Effect of surface mobility, Colloids Surf. A: Physicochem. Eng. Aspects 263, 1-3, 129–145. [CrossRef] [Google Scholar]
  • Denkov N.D., Tcholakova S.S., Höhler R., Cohen-Addad S. (2012) Foam Rheology (Chap. 6), in Foam Engineering: Fundamentals and Applications, Stevenson P. (ed.), John Wiley & Sons, Chichester, UK. [Google Scholar]
  • Derkach S.R. (2009) Rheology of emulsions, Adv. Colloid Interface Sci. 151, 1-2, 1–23. [CrossRef] [PubMed] [Google Scholar]
  • Dickinson E. (1992) An Introduction to Food Colloids, Oxford University Press, New York. [Google Scholar]
  • Ekambara K., Sanders R.S., Nandakumar K., Masliyah J.H. (2008) CFD simulation of bubbly two-phase flow in horizontal pipes, Chem. Eng. J. 144, 2, 277–288. [CrossRef] [Google Scholar]
  • Golemanov K., Tcholakova S., Denkov N.D., Ananthapadmanabhan K.P., Lips A. (2008) Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions, Phys. Rev. E 78, 051405. [CrossRef] [Google Scholar]
  • Gourich B., Vial Ch, Belhaj Soulami M., Zoulalian A., Ziyad M. (2008) Comparison of hydrodynamic and mass transfer performances of an emulsion loop-venturi reactor in cocurrent downflow and upflow configurations, Chem. Eng. J. 140, 1-3, 439–447. [CrossRef] [Google Scholar]
  • Herzhaft B. (1999) Rheology of aqueous foams: a literature review of some experimental works, Oil Gas Sci. Technol. 54, 5, 587–596. [CrossRef] [EDP Sciences] [Google Scholar]
  • Hibiki T., Lee T.H., Lee J.Y., Ishii M. (2006) Interfacial area concentration in boiling bubbly flow systems, Chem. Eng. Sci. 61, 24, 7979–7990. [CrossRef] [Google Scholar]
  • Hotrum N.E., Cohen Stuart M.A., van Vliet T., Avino S.F., van Aken G.A. (2005) Elucidating the relationship between the spreading coefficient, surface-mediated partial coalescence and the whipping time of artificial cream, Colloids Surf. A: Physicochem. Eng. Aspects 260, 1-3, 71–78. [CrossRef] [Google Scholar]
  • Jakubczyk E., Niranjan K. (2006) Transient development of whipped cream properties, J. Food Eng. 77, 1, 79–83. [CrossRef] [Google Scholar]
  • Jung D.-M., Ebeler S.E. (2003) Investigation of binding behavior of α- and β-ionones to β-lactoglobulin at different pH values using a diffusion-based NOE pumping technique, J. Agric. Food Chem. 51, 7, 1988–1993. [CrossRef] [PubMed] [Google Scholar]
  • Labbafi M., Thakur R.K., Vial C., Djelveh G. (2007) Development of an on-line optical method for assessment of the bubble size and morphology in aerated food products, Food Chem. 102, 2, 454–465. [CrossRef] [Google Scholar]
  • Llewellin E., Manga M. (2005) Bubble suspension rheology and implications for conduit flow, J. Volcanol. Geothermal Res. 143, 1-3, 205–217. [CrossRef] [Google Scholar]
  • Llewellin E.W., Mader H.M., Wilson S.D.R. (2002) The rheology of a bubbly liquid, Proc. R. Soc Lond. A 458, 2020, 987–1016. [CrossRef] [Google Scholar]
  • Marinova K.G., Basheva E.S., Nenova B., Temelska M., Mirarefi A.Y., Campbell B., Ivanov I.B. (2009) Physico-chemical factors controlling the foamability and foam stability of milk proteins: Sodium caseinate and whey protein concentrates, Food Hydrocoll. 23, 1864–1876. [CrossRef] [Google Scholar]
  • Murray B.S., Durga K., Yusoff A., Stoyanov S.D. (2011) Stabilization of foams and emulsions by mixtures of surface active food-grade particles and proteins, Food Hydrocoll. 25, 4, 627–638. [CrossRef] [Google Scholar]
  • Narchi I., Vial C., Djelveh G. (2009) Effect of matrix elasticity on the continuous foaming of food models, Appl. Biochem. Biotechnol. 151, 2-3, 105–121. [CrossRef] [Google Scholar]
  • Narchi I., Vial C., Labbafi M., Djelveh G. (2011) Comparative study of the design of continuous aeration equipment for the production of food foams, J. Food Eng. 102, 2, 105–114. [CrossRef] [Google Scholar]
  • Pal R. (1998) A novel method to correlate emulsion viscosity data, Colloids Surf. A: Physicochem. Eng. Aspects 137, 1-3, 275–286. [CrossRef] [Google Scholar]
  • Pal R. (2003) Rheological behavior of bubble-bearing magmas, Earth Planet. Sci. Lett. 207, 1-4, 165–179. [CrossRef] [Google Scholar]
  • Pal R. (2006) Rheology of Particulate Dispersions and Composites, CRC Press, Boca Raton. [CrossRef] [Google Scholar]
  • Pal R. (2011) Influence of interfacial rheology on the viscosity of concentrated emulsions, J. Colloid Interface Sci. 356, 1, 118–122. [CrossRef] [PubMed] [Google Scholar]
  • Politova N., Tcholakova S., Golemanov K., Denkov N.D., Vethamuthu M., Ananthapadmanabhan K.P. (2012) Effect of cationic polymers on foam rheological properties, Langmuir 28, 2, 1115–1126. [CrossRef] [PubMed] [Google Scholar]
  • Roghair I., Lau Y.M., Deen N.G., Slagter H.M., Baltussen M.W., VanSint Annaland M., Kuipers J.A.M. (2011) On the drag force of bubbles in bubble swarms at intermediate and high Reynolds numbers, Chem. Eng. Sci. 66, 14, 3204–3211. [CrossRef] [Google Scholar]
  • Rust A.C., Manga M. (2002) Effects of bubble deformation on the viscosity of dilute suspensions, J. Non-Newtonian Fluid Mech. 104, 1, 53–63. [CrossRef] [Google Scholar]
  • Ruzicka M.C., Drahoš J., Mena P.C., Teixeira J.A. (2003) Effect of viscosity on homogeneous–heterogeneous flow regime transition in bubble columns, Chem. Eng. J. 96, 1-3, 15–22. [CrossRef] [Google Scholar]
  • Saint-Jalmes A., Durian D.J. (1999) Vanishing elasticity for wet foams: Equivalence with emulsions and role of polydispersity, J. Rheol. 43, 6, 1411–1422. [CrossRef] [Google Scholar]
  • Thakur R.K., Vial C., Djelveh G. (2008) Effect of composition and process parameters on elasticity and solidity of foamed food, Chem. Eng. Process. 47, 3, 474–483. [CrossRef] [Google Scholar]
  • Vinckier I., Minale M., Mewis J., Moldenaers P. (1999) Rheology of semi-dilute emulsions: viscoelastic effects caused by the interfacial tension, Colloids Surf. A: Physicochem. Eng. Aspects 150, 1-3, 217–228. [CrossRef] [Google Scholar]
  • Wang J., Yuan Y., Zhang L., Wang R. (2009) The influence of viscosity on stability of foamy oil in the process of heavy oil solution gas drive, J. Petrol. Sci. Eng. 66, 1-2, 69–74. [CrossRef] [Google Scholar]
  • Weaire D. (2008) The rheology of foam, Curr. Opin. Colloid Interface Sci. 13, 3, 171–176. [CrossRef] [Google Scholar]
  • Weaire D., Hutzler S. (1999) The Physics of Foams, Clarendon Press, Oxford. [Google Scholar]
  • Yaron I., Gal-Or B. (1972) On viscous flow and effective viscosity of concentrated suspensions and emulsions. Effect of particle concentration and surfactant impurities, Rheol. Acta 11, 3-4, 241–252. [CrossRef] [Google Scholar]
  • Zhao J., Pillai S., Pilon L. (2009) Rheology of colloidal gas aphrons (microfoams) made from different surfactants, Colloids Surf. A: Physicochem. Eng. Aspects 348, 1-3, 93–99. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.