Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 3, May-June 2013
Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Page(s) 545 - 556
DOI https://doi.org/10.2516/ogst/2012079
Published online 13 June 2013
  • Busby D., Feraille M. (2008) Adaptive Design of Experiments for calibration of complex simulators – An Application to Uncertainty Quantification of a Mature Oil Field, J. Phys.: Conf. Ser. 135, 012026, doi: 10.1088/1742-6596/135/1/012026.
  • Busby D. (2009) Hierarchical adaptive experimental design for Gaussian process emulators, Reliab. Eng. Syst. Safe. 94, 1183-1193. doi: 10.1016/j.ress.2008.07.007. [CrossRef]
  • Cressie N.A.C. (1993) Statistics for Spatial Data, Wiley, New York.
  • Fang K.T., Li R., Sudjianto A. (2006) Design and modeling for computer experiments, Chapman and Hall/CRC.
  • Feraille M., Marrel A. (2012) Prediction under uncertainty on a mature field, Oil Gas Sci. Technol. 67, 2, 193-206. doi: 10.2516/ogst/2011172. [CrossRef] [EDP Sciences]
  • Geyer C.J. (1992) Practical Markov chain Monte Carlo (with discussion), Stat. Sci. 7, 473-511. doi:10.1214/ss/1177011137. [CrossRef]
  • Hansen N. (2006) The CMA Evolution Strategy: A Comparing Review, in Towards a new evolutionary computation, Advances in estimation of distribution algorithms, Lozano J.A., Larranga P., Inza I., Bengoetxea E. (eds), Springer.
  • Jourdan A. (2000) Analyse statistique et échantillonnage d’expériences simulées, Dissertation, Université de Pau et des pays de l’Adour, France.
  • Kennedy M.C., O’Hagan A. (2001) Bayesian calibration of computer models, J. R. Stat. Soc., Ser. B Stat. Methodol. 63 425-464. doi: 10.1111/1467-9868.00294. [CrossRef] [MathSciNet]
  • McKay M.D., Beckman R.J., Conover W.J. (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21 239-245. doi: 10.2307/1268522. [CrossRef] [MathSciNet]
  • Marrel A. (2008) Mise en oeuvre et utilisation du métamodèle processus Gaussien pour l’analyse de sensibiliteé de modèles numeériques, Dissertation, Institut National des Sciences Appliqueées de Toulouse, France.
  • Matheron G. (1963) Principles of geostatistics, Econ. Geol. 58 1246-1266. doi: 10.2113/gsecongeo.58.8.1246. [CrossRef]
  • Sacks J., Welch W.J., Mitchell T.J., Wynn H.P. (1989) Design and analysis of computer experiments, Stat. Sci. 4, 409-423. doi:10.1214/ss/1177012413. [CrossRef] [MathSciNet]
  • Scheidt C., Zabalza-Mezghani I., Feraille M., Collombier D. (2007) Toward a Reliable Quantification of Uncertainty on Production Forecasts: Adaptive Experimental Designs, Oil Gas Sci., Technol. 62, 207-224. doi: 10.2516/ogst:2007018. [CrossRef] [EDP Sciences]
  • Schonlau M. (1997) Computer Experiments and Global Optimization University of Waterloo, Canada, Dissertation.
  • Tarantola A. (2005) Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM (Society for Industrial and Applied Mathematics), ISBN 978-0-89871-572-9.
  • Vazquez E., Bect J. (2010) Convergence properties of the expected improvement algorithm with fixed mean and covariance functions, J. Stat. Plan. Infer. 140, 3088-3095. doi: 10.1016/j.jspi.2010.04.018. [CrossRef]
  • Villemonteix J., Vazquez E., Sidorkiewicz M., Walter E. (2009) Global optimization of expensive-to-evaluate functions: an empirical comparison of two sampling criteria, J. Glob. Optim. 44, 509-534. doi: 10.1007/s10898-008-9313-y. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.