Dossier: Challenges and New Approaches in EOR
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Number 6, November-December 2012
Dossier: Challenges and New Approaches in EOR
Page(s) 969 - 982
DOI https://doi.org/10.2516/ogst/2012040
Published online 30 January 2013
  • Mohan K., Gupta R., Mohanty K.K. (2011) Wettability altering secondary oil recovery in carbonate rocks, Energy Fuels 25, 3966-3973. [CrossRef] [Google Scholar]
  • Brown L. (2010) Microbial Enhanced Oil Recovery (MEOR), Curr. Opinion Microbiol. 50, 316-320. [CrossRef] [PubMed] [Google Scholar]
  • Sun S., Zhang Z., Luo Y., Zhong W., Xiao M., Yi W., Yu L., Fu P. (2011) Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery, Bioresour. Technol. 102, 6153-6158. [CrossRef] [PubMed] [Google Scholar]
  • www.fossil.energy.gov [Google Scholar]
  • Samanta A., Ojha K., Mandal A. (2011) Interactions between acidic crude oil and alkali and their effects on enhanced oil recovery, Energy Fuels 25, 1642-1649. [CrossRef] [Google Scholar]
  • Gubbins K.E., Moore J.D. (2010) Molecular modeling of matter : Impact and prospects in engineering, Ind. Eng. Chem. Res. 49, 3026-3046. [CrossRef] [Google Scholar]
  • Theodorou D.N. (2010) Progress and outlook in Monte Carlo simulations, Ind. Eng. Chem. Res. 49, 3047-3058. [CrossRef] [Google Scholar]
  • Maginn E.J., Elliott J.R. (2010) Historical perspective and current outlook for molecular dynamics as a chemical engineering tool, Ind. Eng. Chem. Res. 49, 3059-3078. [CrossRef] [Google Scholar]
  • Moeendarbary E., Ng T.Y., Zangeneh M. (2009) Dissipative particle dynamics : Introduction, methodology and complex fluid applications - A review, Int. J. Appl. Mech. 1, 737-763. [CrossRef] [Google Scholar]
  • Moeendarbary E., Ng T.Y., Zangeneh M. (2010) Dissipative particle dynamics in soft matter and polymeric applications - A review, Int. J. Appl. Mech. 2, 161-190. [CrossRef] [Google Scholar]
  • Katritzky A.R., Kuanar M., Slavov S., Hall C.D., Karelson M., Kahn I., Dobchev D.A. (2010) Quantitative correlation of physical and chemical properties with chemical structure : utility for prediction, Chem. Rev. 110, 5714-5789. [CrossRef] [PubMed] [Google Scholar]
  • Torres L., Moctezuma A., Avendaño J.R., Muñoz A., Gracida J. (2011) Comparison of bio- and synthetic surfactants for EOR, J. Petrol. Sci. Eng. 76, 6-11. [CrossRef] [Google Scholar]
  • Viduna D., Milchev A., Binder K. (1998) Monte Carlo simulation of micelle formation in block copolymer solutions, Macromol. Theory Simul. 7, 649-658. [CrossRef] [Google Scholar]
  • Floriano M.A., Caponetti E., Panagiotopoulos A.Z. (1999) Micellization in model surfactant systems, Langmuir 15, 3143-3151. [CrossRef] [Google Scholar]
  • da Rocha S.R.P., Johnston K.P., Rossky P.J. (2002) Surfactant-modified CO2-water interface : A molecular view, J. Phys. Chem. B 106, 13250-13261. [CrossRef] [Google Scholar]
  • Stone M.T., Rossky P.J., Johnston K.P. (2003) Water interface, J. Phys. Chem. B 107, 10185-10192. [CrossRef] [Google Scholar]
  • Chanda J., Bandyopadhyay S. (2005) Molecular dynamics study of a surfactant monolayer adsorbed at the air/water interface, J. Chem. Theory Comput. 1, 963-971. [CrossRef] [PubMed] [Google Scholar]
  • Larson R.G., Scriven L.E., Davis H.T. (1985) Monte-Carlo simulation of model amphiphilic oil-water systems, J. Chem. Phys. 83, 2411-2420. [CrossRef] [Google Scholar]
  • Wijmans C.M., Linse P. (1995) Modeling of nonionic micelles, Langmuir 11, 3748-3756. [CrossRef] [Google Scholar]
  • Kusaka I., Oxtoby D.W. (2001) A Monte Carlo simulation of nucleation in amphiphilic solution, J. Chem. Phys. 115, 4883-4889. [CrossRef] [Google Scholar]
  • Milchev A., Bhattacharya A., Binder K. (2001) Formation of block copolymer micelles in solution : A Monte Carlo study of chain length dependence, Macromolecules 34, 1881-1893. [CrossRef] [Google Scholar]
  • Lísal M., Hall C., Gubbins K.E., Panagiotopoulos A. (2002) Micellar behavior in supercritical solvent-surfactant systems from lattice Monte Carlo simulations, Fluid Phase Equilib. 194-197, 233-247. [CrossRef] [Google Scholar]
  • Rodriguez-guadarrama L., Ramanathan S., Mohanty K., Vasquez V. (2004) Molecular modeling of binary mixtures of amphiphiles in a lattice solution, Fluid Phase Equilib. 226, 27-36. [CrossRef] [Google Scholar]
  • Israelachvili J.N., Mitchell D.J., Ninham B.W. (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, J. Chem. Soc. Faraday Trans. 2 72, 1525-1568. [CrossRef] [Google Scholar]
  • Sammalkorpi M., Sanders S., Panagiotopoulos A.Z., Karttunen M., Haataja M. (2011) Simulations of micellization of sodium hexyl sulfate, J. Phys. Chem. B 115, 1403-1410. [CrossRef] [PubMed] [Google Scholar]
  • Talsania S., Wang Y., Rajagopalan R., Mohanty K. (1997) Monte Carlo simulations for micellar encapsulation, J. Colloid Interface Sci. 190, 92-103. [CrossRef] [PubMed] [Google Scholar]
  • Talsania S.K., Rodríguez-Guadarrama L.A., Mohanty K.K., Rajagopalan R. (1998) Phase behavior and solubilization in surfactant/solute/solvent systems by Monte Carlo simulations, Langmuir 14, 2684-2692. [CrossRef] [Google Scholar]
  • Mackie A.D., Panagiotopoulos A.Z., Szleifer I. (1997) Aggregation behavior of a lattice model for amphiphiles, Langmuir 13, 5022-5031. [CrossRef] [Google Scholar]
  • Pool R., Bolhuis P.G. (2005) Accurate free energies of micelle formation, J. Phys. Chem. B 109, 6650-6657. [CrossRef] [PubMed] [Google Scholar]
  • Cavallo A., Müller M., Binder K. (2006) Formation of micelles in homopolymer-copolymer mixtures : A quantitative comparison between simulations of long chains and self-consistent field calculations, Macromolecules 39, 9539-9550. [CrossRef] [Google Scholar]
  • Gharibi H., Behjatmanesh-Ardakani R., Hashemianzadeh M., Mousavi-Khoshdel M. (2006) Complexation between a macromolecule and an amphiphile by Monte Carlo technique, J. Phys. Chem. B 110, 13547-13553. [CrossRef] [PubMed] [Google Scholar]
  • Hashemianzadeh S.M., Gharibi H., Mousavi-Khoshdel S.M., Sohrabi B., Safarpoor M.A. (2008) Lattice Monte Carlo simulation of dilute ionic surfactants, J. Mol. Liq. 138, 147-154. [CrossRef] [Google Scholar]
  • Jorge M. (2008) Molecular dynamics simulation of self-assembly of n-decyltrimethylammonium bromide micelles, Langmuir 24, 5714-5725. [CrossRef] [PubMed] [Google Scholar]
  • Stephenson B.C., Beers K., Blankschtein D. (2006) Complementary use of simulations and molecular-thermodynamic theory to model micellization, Langmuir 22, 1500-1513. [CrossRef] [PubMed] [Google Scholar]
  • Stephenson B.C., Goldsipe A., Beers K.J., Blankschtein D. (2007) Model for the micellization of nonionic surfactants in aqueous solution, J. Phys. Chem. B 111, 1045-1062. [CrossRef] [PubMed] [Google Scholar]
  • Stephenson B.C., Goldsipe A., Blankschtein D. (2008) Molecular dynamics simulation and thermodynamic modeling of the self-assembly of the triterpenoids asiatic acid and madecassic acid in aqueous solution, J. Phys. Chem. B 112, 2357-2371. [CrossRef] [PubMed] [Google Scholar]
  • Samanta S.K., Bhattacharya S., Maiti P.K. (2009) Coarse-grained molecular dynamics simulation of the aggregation properties of multiheaded cationic surfactants in water, J. Phys. Chem. B 113, 13545-13550. [CrossRef] [PubMed] [Google Scholar]
  • Maiti P.K., Lansac Y., Glaser M.A., Clark N.A., Rouault Y. (2002) Self-assembly in surfactant oligomers : A coarse-grained description through molecular dynamics simulations, Langmuir 18, 1908-1918. [CrossRef] [Google Scholar]
  • Marrink S.J., De Vries A.H., Mark A.E. (2004) Coarse grained model for semiquantitative lipid simulations, J. Phys. Chem. B 108, 750-760. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Burov S.V., Vanin A.A., Brodskaya E.N. (2009) Principal role of the stepwise aggregation mechanism in ionic surfactant solutions near the critical micelle concentration. Molecular dynamics study, J. Phys. Chem. B 113, 10715-10720. [CrossRef] [PubMed] [Google Scholar]
  • Sanders S.A., Panagiotopoulos A.Z. (2010) Micellization behavior of coarse grained surfactant models, J. Chem. Phys. 132, 114902. [CrossRef] [PubMed] [Google Scholar]
  • Kirkwood J.G., Buff F.P. (1949) The statistical mechanical theory of surface tension, J. Chem. Phys. 17, 338-343. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Blokhuis E.M., Bedeaux D., Holcomb C.D., Zollweg J.A. (1995) Tail corrections to the surface-tension of a Lennard-Jones liquid-vapor interface, Mol. Phys. 85, 665-669. [CrossRef] [Google Scholar]
  • Irving J.H., Kirkwood J.G. (1950) The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18, 817-829. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Guo M., Lu B.C.-Y. (1997) Long range corrections to thermodynamic properties of inhomogeneous systems with planar interfaces, J. Chem. Phys. 106, 3688-3695. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Janeček J., Krienke H., Schmeer G. (2006) Interfacial properties of cyclic hydrocarbons : A Monte Carlo study, J. Phys. Chem. B 110, 6916-6923. [CrossRef] [PubMed] [Google Scholar]
  • MacDowell L.G., Blas F.J. (2009) Surface tension of fully flexible Lennard-Jones chains : Role of long-range corrections, J. Chem. Phys. 131, 074705. [CrossRef] [PubMed] [Google Scholar]
  • MacDowell L.G., Bryk P. (2007) Direct calculation of interfacial tensions from computer simulation : Results for freely jointed tangent hard sphere chains, Phys. Rev. E 75, 061609. [CrossRef] [Google Scholar]
  • Gloor G.J., Jackson G., Blas F.J., de Miguel E. (2005) Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials, J. Chem. Phys. 123, 134703. [CrossRef] [PubMed] [Google Scholar]
  • Jang S.S., Lin S.-T., Maiti P.K., Blanco M., Goddard W.A., Shuler P., Tang Y. (2004) Molecular dynamics study of a surfactant-mediated decane-water interface : Effect of molecular architecture of alkyl benzene sulfonate, J. Phys. Chem. B 108, 12130-12140. [CrossRef] [Google Scholar]
  • Ma H., Luo M., Dai L.L. (2008) Influences of surfactant and nanoparticleassembly on effective interfacial tensions, Phys. Chem. Chem. Phys. 10, 2207-2213. [CrossRef] [PubMed] [Google Scholar]
  • Stephenson B.C., Beers K.J. (2006) Determination of the interfacial characteristics of a series of bolaamphiphilic poly(fluorooxetane) surfactants through molecular dynamics simulation, J. Phys. Chem. B 110, 19393-19405. [CrossRef] [PubMed] [Google Scholar]
  • Urbina-Villalba G., Landrove R.M., Guaregua J.A. (1997) Molecular dynamics simulation of the interfacial behavior of a heptane/water system in the presence of nonylphenol entropy and interaction energies as a function of temperature and surfactant concentration, Langmuir 13, 1644-1652. [CrossRef] [Google Scholar]
  • Behjatmanesh-Ardakani R., Nikfetrat M. (2007) Study of Winsor I to Winsor II transitions in a lattice model, J. Phys. Chem. B 111, 7169-7175. [CrossRef] [PubMed] [Google Scholar]
  • Hoogerbrugge P.J., Koelman J.M.V.A. (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett. 19, 155-160. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Groot R.D., Warren P.B. (1997) Dissipative particle dynamics : Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 107, 4423-4435. [CrossRef] [Google Scholar]
  • Rekvig L., Frenkel D. (2007) Molecular simulations of droplet coalescence in oil/water/surfactant systems, J. Chem. Phys. 127, 134701. [CrossRef] [PubMed] [Google Scholar]
  • Pool R., Bolhuis P.G. (2006) Can purely repulsive soft potentials predict micelle formation correctly?, Phys. Chem. Chem. Phys. 8, 941-948. [CrossRef] [PubMed] [Google Scholar]
  • Li Z.L., Dormidontova E.E. (2010) Kinetics of diblock copolymer micellization by dissipative particle dynamics, Macromolecules 43, 3521-3531. [CrossRef] [Google Scholar]
  • Dzwinel W., Yuen D.A. (2000) Matching macroscopic properties of binary fluids to the interactions of dissipative particle dynamics, Int. J. Mod. Phys. C 11, 1-25. [CrossRef] [Google Scholar]
  • Ghoufi A., Malfreyt P. (2011) Local pressure components and surface tension of spherical interfaces. Thermodynamic versus mechanical definitions. I. A mesoscale modeling of droplets, J. Chem. Phys. 135, 104105. [CrossRef] [PubMed] [Google Scholar]
  • Rekvig L., Kranenburg M., Hafskjold B., Smit B. (2003) Effect of surfactant structure on interfacial properties, Europhys. Lett. 63, 902-907. [CrossRef] [Google Scholar]
  • Rekvig L., Kranenburg M., Vreede J., Hafskjold B., Smit B. (2003) Investigation of surfactant efficiency using dissipative particle dynamics, Langmuir 19, 8195-8205. [CrossRef] [Google Scholar]
  • Maiti A., McGrother S. (2004) Bead-bead interaction parameters in dissipative particle dynamics : Relation to bead-size, solubility parameter and surface tension, J. Chem. Phys. 120, 1594-1601. [CrossRef] [PubMed] [Google Scholar]
  • Ginzburg V.V., Chang K., Jog P.K., Argenton A.B., Rakesh L. (2011) Modeling the interfacial tension in oil-water-nonionic surfactant mixtures using dissipative particle dynamics and self-consistent field theory, J. Phys. Chem. B 115, 4654-4661. [CrossRef] [PubMed] [Google Scholar]
  • Li Y.M., Guo Y.Y., Bao M.T., Gao X.L. (2011) Investigation of interfacial and structural properties of CTAB at the oil/water interface using dissipative particle dynamics simulations, J. Colloid Interface Sci. 361, 573-580. [CrossRef] [PubMed] [Google Scholar]
  • Li Y.M., Xu G.Y., Chen Y.J., Luan Y., Yuan S.L. (2006) Computer simulations of surfactants and surfactant/polymer assemblies, Comput. Mater. Sci. 36, 386-396. [CrossRef] [Google Scholar]
  • Jury S., Bladon P., Cates M., Krishna S., Hagen M., Ruddock N., Warren P. (1999) Simulation of amphiphilic mesophases using dissipative particle dynamics, Phys. Chem. Chem. Phys. 1, 2051-2056. [CrossRef] [Google Scholar]
  • Ryjkina E., Kuhn H., Rehage H., Muller F., Peggau J. (2002) Molecular dynamics computer simulations of phase behavior of non-ionic surfactants, Ang. Chem. Int. Ed. 41, 983-986. [CrossRef] [Google Scholar]
  • Yang C.J., Chen X., Qiu H.Y., Zhuang W.C., Chai Y.C., Hao J.C. (2006) Dissipative particle dynamics simulation of phase behavior of aerosol OT/water system, J. Phys. Chem. B 110, 21735-21740. [CrossRef] [PubMed] [Google Scholar]
  • Illya G., Lipowsky R., Shillcock J.C. (2006) Two-component membrane material properties and domain formation from dissipative particle dynamics, J. Chem. Phys. 125, 114710. [CrossRef] [PubMed] [Google Scholar]
  • Shillcock J.C., Lipowsky R. (2006) The computational route from bilayer membranes to vesicle fusion, J. Phys. Condens. Matter 18, S1191-S1219. [CrossRef] [PubMed] [Google Scholar]
  • Zhong C.L., Liu D.H. (2007) Understanding multicompartment micelles using dissipative particle dynamics simulation, Macromol. Theory Simul. 16, 141-157. [CrossRef] [Google Scholar]
  • Schulz S.G., Kuhn H., Schmid G., Mund C., Venzmer J. (2002) Phase behavior of amphiphilic polymers : A dissipative particles dynamics study, Colloid Polym. Sci. 283, 284-290. [CrossRef] [Google Scholar]
  • Rekvig L., Hafskjold B., Smit B. (2004) Molecular simulations of surface forces and film rupture in oil/water/surfactant systems, Langmuir 20, 11583-11593. [CrossRef] [PubMed] [Google Scholar]
  • Groot R.D. (2000) Mesoscopic simulation of polymer-surfactant aggregation, Langmuir 16, 7493-7502. [CrossRef] [Google Scholar]
  • Groot R.D., Rabone K.L. (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants, Biophys. J. 81, 725-736. [CrossRef] [PubMed] [Google Scholar]
  • Chen Z.X., Cheng X.L., Cui H.S., Cheng P., Wang H.Y. (2007) Dissipative particle dynamics simulation of the phase behavior and microstructure of CTAB/octane/1-butanol/water microemulsion, Colloids Surf. A Physicochem. Eng. Aspects 301, 437-443. [CrossRef] [Google Scholar]
  • Groot R.D. (2003) Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants, J. Chem. Phys. 118, 11265. [CrossRef] [Google Scholar]
  • Gonzalez-Melchor M., Mayoral E., Velazquez M.E., Alejandre J. (2006) Electrostatic interactions in dissipative particle dynamics using the Ewald sums, J. Chem. Phys. 125, 224107. [CrossRef] [PubMed] [Google Scholar]
  • Ibergay C., Malfreyt P., Tildesley D.J. (2009) Electrostatic Interactions in Dissipative Particle Dynamics : Toward a Mesoscale Modeling of the Polyelectrolyte Brushes, J. Chem. Theory Comput. 5, 3245-3259. [CrossRef] [Google Scholar]
  • Ibergay C., Malfreyt P., Tildesley D.J. (2010) Mesoscale Modeling of Polyelectrolyte Brushes with Salt, J. Phys. Chem. B 114, 7274-7285. [CrossRef] [PubMed] [Google Scholar]
  • Tropsha A. (2010) Best practices for QSAR model development, validation and exploitation, Mol. Inf. 29, 476-488. [CrossRef] [Google Scholar]
  • Chirico N., gramatica P. (2011) Real external predictivity of QSAR models : How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51, 2320-2335. [CrossRef] [PubMed] [Google Scholar]
  • Hu J., Zhang X., Wang Z. (2010) A review on progress in QSPR studies for surfactants, Int. J. Mol. Sci. 11, 1020-1047. [CrossRef] [PubMed] [Google Scholar]
  • Rosen M.J. (1976) The relationship of structure to properties in surfactants. IV. Effectiveness in surface or interfacial tension reduction, J. Colloid Interface Sci. 56, 320-327. [CrossRef] [Google Scholar]
  • Becher P. (1984) Hydrophile-lipophile balance : history and recent developments, J. Dispers. Sci. Technol. 5, 81-96. [CrossRef] [Google Scholar]
  • Ravey J.C., Gherbi A., Stébé M.J. (1988) Comparative study of fluorinated and hydrogenated nonionic surfactants. I. Surface activity properties and critical concentrations, Prog. Colloid Polym. Sci. 76, 234-241. [CrossRef] [Google Scholar]
  • Huibers P.D.T., Lobanov V.S., Katritzky A.R., Shah D.O., Karelson M. (1996) Prediction of critical micelle concentration using a quantitative structure-property relationship approach. 1. Nonionic surfactants, Langmuir 12, 1462-1470. [CrossRef] [Google Scholar]
  • Huibers P.D.T., Lobanov V.S., Katritzky A.R., Shah D.O., Karelson M. (1997) Prediction of critical micelle concentration using a Quantitative structure-property relationship approach. 2. Anionic Surfactants, J. Colloid Interface Sci. 187, 113-120. [CrossRef] [PubMed] [Google Scholar]
  • Anoune N., Nouiri M., Berrah Y., Gauvrit J.-Y., Lanteri P. (2002) Critical micelle concentrations of different classes of surfactants : A quantitative structure property relationship study, J. Surfactant. Deterg. 5, 45-53. [CrossRef] [Google Scholar]
  • Wang Z. (2002) A quantitative structure-property relationship study for the prediction of critical micelle concentration of nonionic surfactants, Colloids Surf. A Physicochem. Eng. Aspects 197, 37-45. [CrossRef] [Google Scholar]
  • Yuan S., Cai Z., Xu G., Jiang Y. (2002) Quantitative structure-property relationships of surfactants : Prediction of the critical micelle concentration of nonionic surfactants, Colloid Polym. Sci. 280, 630-636. [CrossRef] [Google Scholar]
  • Saunders R.A., Platts J.A. (2004) Correlation and prediction of critical micelle concentration using polar surface area and LFER methods, J. Phys. Org. Chem. 17, 431-438. [CrossRef] [Google Scholar]
  • Gad E.A.M. (2007) QSPR for nonionic surfactants, J. Dispers. Sci. Technol. 28, 231-237. [CrossRef] [Google Scholar]
  • Katritzky A.R. (2008) QSPR study of critical micelle concentrations of nonionic surfactants, Ind. Eng. Chem. Res. 47, 9687-9695. [CrossRef] [Google Scholar]
  • Mozrzymas A., Rózycka-Roszak B. (2010) Prediction of critical micelle concentration of nonionic surfactants by a quantitative structure-property relationship, Comb. Chem. High Throughput Screening 13, 39-44. [CrossRef] [Google Scholar]
  • Roy K., Kabir H. (2012) QSPR with extended topochemical atom (ETA) indices : Modeling of critical micelle concentration of non-ionic surfactants, Chem. Eng. Sci. 73, 86-98. [CrossRef] [Google Scholar]
  • Jalali-Heravi M., Konouz E. (2003) Multiple Linear Regression Modeling of the Critical Micelle Concentration of Alkyltrimethylammonium and Alkylpyridinium Salts, J. Surfactant. Deterg. 6, 25-30. [CrossRef] [Google Scholar]
  • Katritzky A.R., Pacureanu L., Slavov S., Dobchev D., Shah D., Karelson M. (2009) QSPR study of the first and second critical micelle concentrations of cationic surfactants, Comput. Chem. Eng. 33, 321-332. [CrossRef] [Google Scholar]
  • Mozrzymas A., Rózycka-Roszak B. (2011) Prediction of critical micelle concentration of cationic surfactants using connectivity indices, J. Math. Chem. 49, 276-289. [CrossRef] [Google Scholar]
  • Jalali-Heravi M., Konouz E. (2000) Prediction of critical micelle concentration of some anionic surfactants using multiple regression techniques : A quantitative structure-activity relationship study, J. Surfactant. Deterg. 3, 47-52. [CrossRef] [Google Scholar]
  • Yuan S., Cai Z., Xu G., Jiang Y. (2002) Quantitative structure-property rlationships of surfactants : critical micelle concentration of anionic surfactants, J. Dispers. Sci. Technol. 23, 465-472. [CrossRef] [Google Scholar]
  • Roberts D.W. (2002) Application of octanol/water partition coefficients in surfactant science : A quantitative structure-property relationship for micellization of anionic surfactants, Langmuir 18, 345-352. [CrossRef] [Google Scholar]
  • Li X., Zhang G., Dong J., Zhou X., Yan X., Luo M. (2004) Estimation of critical micelle concentration of anionic surfactants with QSPR approach, J. Mol. Struct. Theochem. 710, 119-126. [CrossRef] [Google Scholar]
  • Katritzky A.R., Pacureanu L., Dobchev D., Karelson M. (2007) QSPR study of critical micelle concentration of anionic surfactants using computational molecular descriptors, J. Chem. Inf. Model. 47, 782-793. [CrossRef] [PubMed] [Google Scholar]
  • Stanton D.T. (2008) On the importance of topological descriptors in understanding structure-property relationships, J. Comput. Aided Mol. Design 22, 441-460. [CrossRef] [Google Scholar]
  • Absalan G., Hemmateenejad B., Soleimani M., Akhond M., Miri R. (2004) Quantitative structure-micellization relationship study of gemini surfactants using genetic-PLS and genetic-MLR, QSAR Comb. Sci. 23, 416-425. [CrossRef] [Google Scholar]
  • Kardanpour Z., Hemmateenejad B., Khayamian T. (2005) Wavelet neural network-based QSPR for prediction of critical micelle concentration of gemini surfactants, Anal. Chim. Acta 531, 285-291. [CrossRef] [Google Scholar]
  • Guo C.W., Zhou P., Shao J., Yang X.C., Shang Z.C. (2011) Integrating statistical and experimental protocols to model and design novel Gemini surfactants with promising critical micelle concentration and low environmental risk, Chemosphere 84, 1608-1616. [CrossRef] [PubMed] [Google Scholar]
  • Bhhatarai B., Gramatica P. (2011) Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals, Environ. Sci. Technol. 45, 8120-8128. [CrossRef] [PubMed] [Google Scholar]
  • Wang Z.-W., Li G.-Z., Mu J.-H., Zhang X.-Y., Lou J. (2002) Quantitative structure-property relationship on prediction of surface tension of nonionic surfactants, Chinese Chem. Lett. 13, 363-366. [Google Scholar]
  • Wang Z.-W., Huang D.-Y., Li G.-Z., Zhang X.Y., Liao L.-L. (2003) Effectiveness of surface tension reduction by anionic surfactants - quantitative structure-property relationships, J. Dispers. Sci. Technol. 24, 653-658. [CrossRef] [Google Scholar]
  • Wang Z.-W., Feng J.-L., Wang H.-J., Cui Z.-G., Li G.-Z. (2005) Effectiveness of surface tension reduction by nonionic surfactants with quantitative structure-property relationship approach, J. Dispers. Sci. Technol. 26, 441-447. [CrossRef] [Google Scholar]
  • Fini M.F., Riahi S., Bahramian A. (2012) Experimental and QSPR studies on the effect of ionic surfactants on n-Decane-Water interfaciale tension, J. Surfactant. Deterg. 15, 477-484. [CrossRef] [Google Scholar]
  • Needham D.E., Wei I.-Chien, Seybold P.G. (1988) Molecular modeling of the physical properties of alkanes, J. Am. Chem. Soc. 110, 4186-4194. [CrossRef] [Google Scholar]
  • Stanton D.T., Jurs P.C. (1990) Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies, Anal. Chem. 62, 2323-2329. [CrossRef] [Google Scholar]
  • Stanton D.T., Jurs P.C. (1992) Computer-assisted study of the relationship between molecular structure and surface tension of organic compounds, J. Chem. Inf. Model. 32, 109-115. [CrossRef] [Google Scholar]
  • Liu S., Cai S., Cao C., Li Z. (2000) Molecular Electronegative Distance Vector (MEDV) related to 15 properties of alkanes, J. Chem. Inf. Comput. Sci. 40, 1337-1348. [CrossRef] [PubMed] [Google Scholar]
  • Knotts T.A., Wilding W.V., Oscarson J.L., Rowley R.L. (2001) Use of the DIPPR database for development of QSPR correlations : Surface tension, J. Chem. Eng. Data 46, 1007-1012. [CrossRef] [Google Scholar]
  • Kauffman G.W., Jurs P.C. (2001) Prediction of surface tension, viscosity and thermal conductivity for common organic solvents using quantitative structure-property relationships, J. Chem. Inf. Comput. Sci. 41, 408-418. [CrossRef] [PubMed] [Google Scholar]
  • Shamsipur M., Ghavami R., Hemmateenejad B., Sharghi H. (2004) Highly correlating distance-connectivity-based topological indices. 2 : Prediction of 15 properties of a large set of alkanes using a stepwise factor selection-based PCR analysis, QSAR Comb. Sci. 23, 734-753. [CrossRef] [Google Scholar]
  • Delgado E.J., Diaz G.A. (2006) A molecular structure based model for predicting surface tension of organic compounds, SAR QSAR Environ. Res. 17, 483-496. [CrossRef] [PubMed] [Google Scholar]
  • Wang J., Du H., Liu H., Yao X., Hu Z., Fan B. (2007) Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine, Talanta 73, 147-156. [CrossRef] [PubMed] [Google Scholar]
  • Khajeh F., Modarress H. (2011) Quantitative structure-property relationship for surface tension of some common alcohols, J. Chemom. 25, 333-339. [CrossRef] [Google Scholar]
  • Gharagheizi F., Eslamimanesh A., Mohammadi A.H., Richon D. (2011) Use of artificial neural network-group contribution method to determine surface tension of pure compounds, J. Chem. Eng. Data 56, 2587-2601. [CrossRef] [Google Scholar]
  • Gharagheizi F., Eslamimanesh A., Tirandazi B., Mohammadi A.H., Richon D. (2011) Handling a very large dataset for determination of surface tension of chemical compounds using quantitative structure-property relationship strategy, Chem. Eng. Sci. 66, 4991-5023. [CrossRef] [Google Scholar]
  • Davies J.T. (1957) A quantitative kinetic theory of emulsion type. I. Physical chemistry of the emulsifying agent, Proc. 2nd Int. Congr. Surface Activity, Butterworths, London, 1, 426-438. [Google Scholar]
  • Lin I.J., Marszall L. (1976) CMC, HLB, and effective chain length of surface-active anionic and cationc substances containing oxyethylene groups, J. Colloid Interface Sci. 57, 85-93. [CrossRef] [Google Scholar]
  • Guo X., Rong Z., Ying X. (2006) Calculation of the hydrophile-lipophile balance for polyethoxylated surfactants by group contribution method, J. Colloid Int. Sci. 298, 441-450. [CrossRef] [Google Scholar]
  • Chen M.-L., Wang Z.-W., Zhang G.-X., Wang W.-D. (2007) Prediction on hydrophile-lipophile balance values of anionic surfactants with QSPR method, Acta Chim. Sinica 65, 1265-1272. [Google Scholar]
  • Chen M.-L., Wang Z.-W., Duan H.-J. (2009) QSPR for HLB of nonionic surfactants using two simple descriptors, J. Dispers. Sci. Technol. 30, 1481-1485. [CrossRef] [Google Scholar]
  • Gad E.A.M., Khairou K.S. (2008) QSPR for HLB of nonionic surfactants based on polyoxyethylene group, J. Dispers. Sci. Technol. 29, 940-947. [CrossRef] [Google Scholar]
  • Liu S.L., Tong J.B., Li Y.F. (2009) QSPR study of the hydrophile-lipophile balance values of anionic surfactant, Guangdong Chem. 36, 64-65. [Google Scholar]
  • Luan F., Liu H., Gao Y., Li Q., Zhang X., Guo Y. (2009) Prediction of the hydrophile-lipophile balance values of anionic surfactants using a quantitative structure-property relationship, J. Colloid Int. Sci. 336, 773-779. [CrossRef] [Google Scholar]
  • Buijse M., Tandon K., Jain S., Handgraaf W., Fraaije J.G.E.M. (2012) Surfactants optimization for EOR using advanced chemical computational methods, SPE International, SPE paper 154212. [Google Scholar]
  • Muratov E.N., Varlamova E.V., Artemenko A.G., Polishchuk P.G., Kuz’min V.E. (2012) Existing and developing approaches for QSAR analysis of mixtures, Mol. Inf. 31, 202-221. [CrossRef] [Google Scholar]
  • Lindgren A., Sjostrom M., Wold S. (1996) QSAR modelling of the toxicity of some technical non-ionic surfactants towards fairy shrimps, Quant. Struct.-Property Relationship 15, 208-218. [CrossRef] [Google Scholar]
  • Jurado E., Fernandez-Serrano M., Nunez-Olea J., Luzon G., Lechuga M. (2009) Acute toxicity and relationship between metabolites and ecotoxicity during the biodegradation process of non-ionic surfactants : fatty-alcohol ethoxylates, nonylphenol polyethoxylate and alkylpolyglucosides, Water Sci. Technol. 59, 2351-2358. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.