Dossier: Challenges and New Approaches in EOR
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Number 6, November-December 2012
Dossier: Challenges and New Approaches in EOR
Page(s) 969 - 982
DOI https://doi.org/10.2516/ogst/2012040
Published online 30 January 2013
  • Mohan K., Gupta R., Mohanty K.K. (2011) Wettability altering secondary oil recovery in carbonate rocks, Energy Fuels 25, 3966-3973. [CrossRef]
  • Brown L. (2010) Microbial Enhanced Oil Recovery (MEOR), Curr. Opinion Microbiol. 50, 316-320. [CrossRef]
  • Sun S., Zhang Z., Luo Y., Zhong W., Xiao M., Yi W., Yu L., Fu P. (2011) Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery, Bioresour. Technol. 102, 6153-6158. [CrossRef] [PubMed]
  • www.fossil.energy.gov
  • Samanta A., Ojha K., Mandal A. (2011) Interactions between acidic crude oil and alkali and their effects on enhanced oil recovery, Energy Fuels 25, 1642-1649. [CrossRef]
  • Gubbins K.E., Moore J.D. (2010) Molecular modeling of matter : Impact and prospects in engineering, Ind. Eng. Chem. Res. 49, 3026-3046. [CrossRef]
  • Theodorou D.N. (2010) Progress and outlook in Monte Carlo simulations, Ind. Eng. Chem. Res. 49, 3047-3058. [CrossRef]
  • Maginn E.J., Elliott J.R. (2010) Historical perspective and current outlook for molecular dynamics as a chemical engineering tool, Ind. Eng. Chem. Res. 49, 3059-3078. [CrossRef]
  • Moeendarbary E., Ng T.Y., Zangeneh M. (2009) Dissipative particle dynamics : Introduction, methodology and complex fluid applications - A review, Int. J. Appl. Mech. 1, 737-763. [CrossRef]
  • Moeendarbary E., Ng T.Y., Zangeneh M. (2010) Dissipative particle dynamics in soft matter and polymeric applications - A review, Int. J. Appl. Mech. 2, 161-190. [CrossRef]
  • Katritzky A.R., Kuanar M., Slavov S., Hall C.D., Karelson M., Kahn I., Dobchev D.A. (2010) Quantitative correlation of physical and chemical properties with chemical structure : utility for prediction, Chem. Rev. 110, 5714-5789. [CrossRef] [PubMed]
  • Torres L., Moctezuma A., Avendaño J.R., Muñoz A., Gracida J. (2011) Comparison of bio- and synthetic surfactants for EOR, J. Petrol. Sci. Eng. 76, 6-11. [CrossRef]
  • Viduna D., Milchev A., Binder K. (1998) Monte Carlo simulation of micelle formation in block copolymer solutions, Macromol. Theory Simul. 7, 649-658. [CrossRef]
  • Floriano M.A., Caponetti E., Panagiotopoulos A.Z. (1999) Micellization in model surfactant systems, Langmuir 15, 3143-3151. [CrossRef]
  • da Rocha S.R.P., Johnston K.P., Rossky P.J. (2002) Surfactant-modified CO2-water interface : A molecular view, J. Phys. Chem. B 106, 13250-13261. [CrossRef]
  • Stone M.T., Rossky P.J., Johnston K.P. (2003) Water interface, J. Phys. Chem. B 107, 10185-10192. [CrossRef]
  • Chanda J., Bandyopadhyay S. (2005) Molecular dynamics study of a surfactant monolayer adsorbed at the air/water interface, J. Chem. Theory Comput. 1, 963-971. [CrossRef] [PubMed]
  • Larson R.G., Scriven L.E., Davis H.T. (1985) Monte-Carlo simulation of model amphiphilic oil-water systems, J. Chem. Phys. 83, 2411-2420. [CrossRef]
  • Wijmans C.M., Linse P. (1995) Modeling of nonionic micelles, Langmuir 11, 3748-3756. [CrossRef]
  • Kusaka I., Oxtoby D.W. (2001) A Monte Carlo simulation of nucleation in amphiphilic solution, J. Chem. Phys. 115, 4883-4889. [CrossRef]
  • Milchev A., Bhattacharya A., Binder K. (2001) Formation of block copolymer micelles in solution : A Monte Carlo study of chain length dependence, Macromolecules 34, 1881-1893. [CrossRef]
  • Lísal M., Hall C., Gubbins K.E., Panagiotopoulos A. (2002) Micellar behavior in supercritical solvent-surfactant systems from lattice Monte Carlo simulations, Fluid Phase Equilib. 194-197, 233-247. [CrossRef]
  • Rodriguez-guadarrama L., Ramanathan S., Mohanty K., Vasquez V. (2004) Molecular modeling of binary mixtures of amphiphiles in a lattice solution, Fluid Phase Equilib. 226, 27-36. [CrossRef]
  • Israelachvili J.N., Mitchell D.J., Ninham B.W. (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, J. Chem. Soc. Faraday Trans. 2 72, 1525-1568. [CrossRef]
  • Sammalkorpi M., Sanders S., Panagiotopoulos A.Z., Karttunen M., Haataja M. (2011) Simulations of micellization of sodium hexyl sulfate, J. Phys. Chem. B 115, 1403-1410. [CrossRef] [PubMed]
  • Talsania S., Wang Y., Rajagopalan R., Mohanty K. (1997) Monte Carlo simulations for micellar encapsulation, J. Colloid Interface Sci. 190, 92-103. [CrossRef] [PubMed]
  • Talsania S.K., Rodríguez-Guadarrama L.A., Mohanty K.K., Rajagopalan R. (1998) Phase behavior and solubilization in surfactant/solute/solvent systems by Monte Carlo simulations, Langmuir 14, 2684-2692. [CrossRef]
  • Mackie A.D., Panagiotopoulos A.Z., Szleifer I. (1997) Aggregation behavior of a lattice model for amphiphiles, Langmuir 13, 5022-5031. [CrossRef]
  • Pool R., Bolhuis P.G. (2005) Accurate free energies of micelle formation, J. Phys. Chem. B 109, 6650-6657. [CrossRef] [PubMed]
  • Cavallo A., Müller M., Binder K. (2006) Formation of micelles in homopolymer-copolymer mixtures : A quantitative comparison between simulations of long chains and self-consistent field calculations, Macromolecules 39, 9539-9550. [CrossRef]
  • Gharibi H., Behjatmanesh-Ardakani R., Hashemianzadeh M., Mousavi-Khoshdel M. (2006) Complexation between a macromolecule and an amphiphile by Monte Carlo technique, J. Phys. Chem. B 110, 13547-13553. [CrossRef] [PubMed]
  • Hashemianzadeh S.M., Gharibi H., Mousavi-Khoshdel S.M., Sohrabi B., Safarpoor M.A. (2008) Lattice Monte Carlo simulation of dilute ionic surfactants, J. Mol. Liq. 138, 147-154. [CrossRef]
  • Jorge M. (2008) Molecular dynamics simulation of self-assembly of n-decyltrimethylammonium bromide micelles, Langmuir 24, 5714-5725. [CrossRef] [PubMed]
  • Stephenson B.C., Beers K., Blankschtein D. (2006) Complementary use of simulations and molecular-thermodynamic theory to model micellization, Langmuir 22, 1500-1513. [CrossRef] [PubMed]
  • Stephenson B.C., Goldsipe A., Beers K.J., Blankschtein D. (2007) Model for the micellization of nonionic surfactants in aqueous solution, J. Phys. Chem. B 111, 1045-1062. [CrossRef] [PubMed]
  • Stephenson B.C., Goldsipe A., Blankschtein D. (2008) Molecular dynamics simulation and thermodynamic modeling of the self-assembly of the triterpenoids asiatic acid and madecassic acid in aqueous solution, J. Phys. Chem. B 112, 2357-2371. [CrossRef] [PubMed]
  • Samanta S.K., Bhattacharya S., Maiti P.K. (2009) Coarse-grained molecular dynamics simulation of the aggregation properties of multiheaded cationic surfactants in water, J. Phys. Chem. B 113, 13545-13550. [CrossRef] [PubMed]
  • Maiti P.K., Lansac Y., Glaser M.A., Clark N.A., Rouault Y. (2002) Self-assembly in surfactant oligomers : A coarse-grained description through molecular dynamics simulations, Langmuir 18, 1908-1918. [CrossRef]
  • Marrink S.J., De Vries A.H., Mark A.E. (2004) Coarse grained model for semiquantitative lipid simulations, J. Phys. Chem. B 108, 750-760. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  • Burov S.V., Vanin A.A., Brodskaya E.N. (2009) Principal role of the stepwise aggregation mechanism in ionic surfactant solutions near the critical micelle concentration. Molecular dynamics study, J. Phys. Chem. B 113, 10715-10720. [CrossRef] [PubMed]
  • Sanders S.A., Panagiotopoulos A.Z. (2010) Micellization behavior of coarse grained surfactant models, J. Chem. Phys. 132, 114902. [CrossRef] [PubMed]
  • Kirkwood J.G., Buff F.P. (1949) The statistical mechanical theory of surface tension, J. Chem. Phys. 17, 338-343. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Blokhuis E.M., Bedeaux D., Holcomb C.D., Zollweg J.A. (1995) Tail corrections to the surface-tension of a Lennard-Jones liquid-vapor interface, Mol. Phys. 85, 665-669. [CrossRef]
  • Irving J.H., Kirkwood J.G. (1950) The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18, 817-829. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  • Guo M., Lu B.C.-Y. (1997) Long range corrections to thermodynamic properties of inhomogeneous systems with planar interfaces, J. Chem. Phys. 106, 3688-3695. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  • Janeček J., Krienke H., Schmeer G. (2006) Interfacial properties of cyclic hydrocarbons : A Monte Carlo study, J. Phys. Chem. B 110, 6916-6923. [CrossRef] [PubMed]
  • MacDowell L.G., Blas F.J. (2009) Surface tension of fully flexible Lennard-Jones chains : Role of long-range corrections, J. Chem. Phys. 131, 074705. [CrossRef] [PubMed]
  • MacDowell L.G., Bryk P. (2007) Direct calculation of interfacial tensions from computer simulation : Results for freely jointed tangent hard sphere chains, Phys. Rev. E 75, 061609. [CrossRef]
  • Gloor G.J., Jackson G., Blas F.J., de Miguel E. (2005) Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials, J. Chem. Phys. 123, 134703. [CrossRef] [PubMed]
  • Jang S.S., Lin S.-T., Maiti P.K., Blanco M., Goddard W.A., Shuler P., Tang Y. (2004) Molecular dynamics study of a surfactant-mediated decane-water interface : Effect of molecular architecture of alkyl benzene sulfonate, J. Phys. Chem. B 108, 12130-12140. [CrossRef]
  • Ma H., Luo M., Dai L.L. (2008) Influences of surfactant and nanoparticleassembly on effective interfacial tensions, Phys. Chem. Chem. Phys. 10, 2207-2213. [CrossRef] [PubMed]
  • Stephenson B.C., Beers K.J. (2006) Determination of the interfacial characteristics of a series of bolaamphiphilic poly(fluorooxetane) surfactants through molecular dynamics simulation, J. Phys. Chem. B 110, 19393-19405. [CrossRef] [PubMed]
  • Urbina-Villalba G., Landrove R.M., Guaregua J.A. (1997) Molecular dynamics simulation of the interfacial behavior of a heptane/water system in the presence of nonylphenol entropy and interaction energies as a function of temperature and surfactant concentration, Langmuir 13, 1644-1652. [CrossRef]
  • Behjatmanesh-Ardakani R., Nikfetrat M. (2007) Study of Winsor I to Winsor II transitions in a lattice model, J. Phys. Chem. B 111, 7169-7175. [CrossRef] [PubMed]
  • Hoogerbrugge P.J., Koelman J.M.V.A. (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett. 19, 155-160. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  • Groot R.D., Warren P.B. (1997) Dissipative particle dynamics : Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 107, 4423-4435. [CrossRef]
  • Rekvig L., Frenkel D. (2007) Molecular simulations of droplet coalescence in oil/water/surfactant systems, J. Chem. Phys. 127, 134701. [CrossRef] [PubMed]
  • Pool R., Bolhuis P.G. (2006) Can purely repulsive soft potentials predict micelle formation correctly?, Phys. Chem. Chem. Phys. 8, 941-948. [CrossRef] [PubMed]
  • Li Z.L., Dormidontova E.E. (2010) Kinetics of diblock copolymer micellization by dissipative particle dynamics, Macromolecules 43, 3521-3531. [CrossRef]
  • Dzwinel W., Yuen D.A. (2000) Matching macroscopic properties of binary fluids to the interactions of dissipative particle dynamics, Int. J. Mod. Phys. C 11, 1-25. [CrossRef]
  • Ghoufi A., Malfreyt P. (2011) Local pressure components and surface tension of spherical interfaces. Thermodynamic versus mechanical definitions. I. A mesoscale modeling of droplets, J. Chem. Phys. 135, 104105. [CrossRef] [PubMed]
  • Rekvig L., Kranenburg M., Hafskjold B., Smit B. (2003) Effect of surfactant structure on interfacial properties, Europhys. Lett. 63, 902-907. [CrossRef]
  • Rekvig L., Kranenburg M., Vreede J., Hafskjold B., Smit B. (2003) Investigation of surfactant efficiency using dissipative particle dynamics, Langmuir 19, 8195-8205. [CrossRef]
  • Maiti A., McGrother S. (2004) Bead-bead interaction parameters in dissipative particle dynamics : Relation to bead-size, solubility parameter and surface tension, J. Chem. Phys. 120, 1594-1601. [CrossRef] [PubMed]
  • Ginzburg V.V., Chang K., Jog P.K., Argenton A.B., Rakesh L. (2011) Modeling the interfacial tension in oil-water-nonionic surfactant mixtures using dissipative particle dynamics and self-consistent field theory, J. Phys. Chem. B 115, 4654-4661. [CrossRef] [PubMed]
  • Li Y.M., Guo Y.Y., Bao M.T., Gao X.L. (2011) Investigation of interfacial and structural properties of CTAB at the oil/water interface using dissipative particle dynamics simulations, J. Colloid Interface Sci. 361, 573-580. [CrossRef] [PubMed]
  • Li Y.M., Xu G.Y., Chen Y.J., Luan Y., Yuan S.L. (2006) Computer simulations of surfactants and surfactant/polymer assemblies, Comput. Mater. Sci. 36, 386-396. [CrossRef]
  • Jury S., Bladon P., Cates M., Krishna S., Hagen M., Ruddock N., Warren P. (1999) Simulation of amphiphilic mesophases using dissipative particle dynamics, Phys. Chem. Chem. Phys. 1, 2051-2056. [CrossRef]
  • Ryjkina E., Kuhn H., Rehage H., Muller F., Peggau J. (2002) Molecular dynamics computer simulations of phase behavior of non-ionic surfactants, Ang. Chem. Int. Ed. 41, 983-986. [CrossRef]
  • Yang C.J., Chen X., Qiu H.Y., Zhuang W.C., Chai Y.C., Hao J.C. (2006) Dissipative particle dynamics simulation of phase behavior of aerosol OT/water system, J. Phys. Chem. B 110, 21735-21740. [CrossRef] [PubMed]
  • Illya G., Lipowsky R., Shillcock J.C. (2006) Two-component membrane material properties and domain formation from dissipative particle dynamics, J. Chem. Phys. 125, 114710. [CrossRef] [PubMed]
  • Shillcock J.C., Lipowsky R. (2006) The computational route from bilayer membranes to vesicle fusion, J. Phys. Condens. Matter 18, S1191-S1219. [CrossRef] [PubMed]
  • Zhong C.L., Liu D.H. (2007) Understanding multicompartment micelles using dissipative particle dynamics simulation, Macromol. Theory Simul. 16, 141-157. [CrossRef]
  • Schulz S.G., Kuhn H., Schmid G., Mund C., Venzmer J. (2002) Phase behavior of amphiphilic polymers : A dissipative particles dynamics study, Colloid Polym. Sci. 283, 284-290. [CrossRef]
  • Rekvig L., Hafskjold B., Smit B. (2004) Molecular simulations of surface forces and film rupture in oil/water/surfactant systems, Langmuir 20, 11583-11593. [CrossRef] [PubMed]
  • Groot R.D. (2000) Mesoscopic simulation of polymer-surfactant aggregation, Langmuir 16, 7493-7502. [CrossRef]
  • Groot R.D., Rabone K.L. (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants, Biophys. J. 81, 725-736. [CrossRef] [PubMed]
  • Chen Z.X., Cheng X.L., Cui H.S., Cheng P., Wang H.Y. (2007) Dissipative particle dynamics simulation of the phase behavior and microstructure of CTAB/octane/1-butanol/water microemulsion, Colloids Surf. A Physicochem. Eng. Aspects 301, 437-443. [CrossRef]
  • Groot R.D. (2003) Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants, J. Chem. Phys. 118, 11265. [CrossRef]
  • Gonzalez-Melchor M., Mayoral E., Velazquez M.E., Alejandre J. (2006) Electrostatic interactions in dissipative particle dynamics using the Ewald sums, J. Chem. Phys. 125, 224107. [CrossRef] [PubMed]
  • Ibergay C., Malfreyt P., Tildesley D.J. (2009) Electrostatic Interactions in Dissipative Particle Dynamics : Toward a Mesoscale Modeling of the Polyelectrolyte Brushes, J. Chem. Theory Comput. 5, 3245-3259. [CrossRef]
  • Ibergay C., Malfreyt P., Tildesley D.J. (2010) Mesoscale Modeling of Polyelectrolyte Brushes with Salt, J. Phys. Chem. B 114, 7274-7285. [CrossRef] [PubMed]
  • Tropsha A. (2010) Best practices for QSAR model development, validation and exploitation, Mol. Inf. 29, 476-488. [CrossRef]
  • Chirico N., gramatica P. (2011) Real external predictivity of QSAR models : How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51, 2320-2335. [CrossRef] [PubMed]
  • Hu J., Zhang X., Wang Z. (2010) A review on progress in QSPR studies for surfactants, Int. J. Mol. Sci. 11, 1020-1047. [CrossRef] [PubMed]
  • Rosen M.J. (1976) The relationship of structure to properties in surfactants. IV. Effectiveness in surface or interfacial tension reduction, J. Colloid Interface Sci. 56, 320-327. [CrossRef]
  • Becher P. (1984) Hydrophile-lipophile balance : history and recent developments, J. Dispers. Sci. Technol. 5, 81-96. [CrossRef]
  • Ravey J.C., Gherbi A., Stébé M.J. (1988) Comparative study of fluorinated and hydrogenated nonionic surfactants. I. Surface activity properties and critical concentrations, Prog. Colloid Polym. Sci. 76, 234-241. [CrossRef]
  • Huibers P.D.T., Lobanov V.S., Katritzky A.R., Shah D.O., Karelson M. (1996) Prediction of critical micelle concentration using a quantitative structure-property relationship approach. 1. Nonionic surfactants, Langmuir 12, 1462-1470. [CrossRef]
  • Huibers P.D.T., Lobanov V.S., Katritzky A.R., Shah D.O., Karelson M. (1997) Prediction of critical micelle concentration using a Quantitative structure-property relationship approach. 2. Anionic Surfactants, J. Colloid Interface Sci. 187, 113-120. [CrossRef] [PubMed]
  • Anoune N., Nouiri M., Berrah Y., Gauvrit J.-Y., Lanteri P. (2002) Critical micelle concentrations of different classes of surfactants : A quantitative structure property relationship study, J. Surfactant. Deterg. 5, 45-53. [CrossRef]
  • Wang Z. (2002) A quantitative structure-property relationship study for the prediction of critical micelle concentration of nonionic surfactants, Colloids Surf. A Physicochem. Eng. Aspects 197, 37-45. [CrossRef]
  • Yuan S., Cai Z., Xu G., Jiang Y. (2002) Quantitative structure-property relationships of surfactants : Prediction of the critical micelle concentration of nonionic surfactants, Colloid Polym. Sci. 280, 630-636. [CrossRef]
  • Saunders R.A., Platts J.A. (2004) Correlation and prediction of critical micelle concentration using polar surface area and LFER methods, J. Phys. Org. Chem. 17, 431-438. [CrossRef]
  • Gad E.A.M. (2007) QSPR for nonionic surfactants, J. Dispers. Sci. Technol. 28, 231-237. [CrossRef]
  • Katritzky A.R. (2008) QSPR study of critical micelle concentrations of nonionic surfactants, Ind. Eng. Chem. Res. 47, 9687-9695. [CrossRef]
  • Mozrzymas A., Rózycka-Roszak B. (2010) Prediction of critical micelle concentration of nonionic surfactants by a quantitative structure-property relationship, Comb. Chem. High Throughput Screening 13, 39-44. [CrossRef]
  • Roy K., Kabir H. (2012) QSPR with extended topochemical atom (ETA) indices : Modeling of critical micelle concentration of non-ionic surfactants, Chem. Eng. Sci. 73, 86-98. [CrossRef]
  • Jalali-Heravi M., Konouz E. (2003) Multiple Linear Regression Modeling of the Critical Micelle Concentration of Alkyltrimethylammonium and Alkylpyridinium Salts, J. Surfactant. Deterg. 6, 25-30. [CrossRef]
  • Katritzky A.R., Pacureanu L., Slavov S., Dobchev D., Shah D., Karelson M. (2009) QSPR study of the first and second critical micelle concentrations of cationic surfactants, Comput. Chem. Eng. 33, 321-332. [CrossRef]
  • Mozrzymas A., Rózycka-Roszak B. (2011) Prediction of critical micelle concentration of cationic surfactants using connectivity indices, J. Math. Chem. 49, 276-289. [CrossRef]
  • Jalali-Heravi M., Konouz E. (2000) Prediction of critical micelle concentration of some anionic surfactants using multiple regression techniques : A quantitative structure-activity relationship study, J. Surfactant. Deterg. 3, 47-52. [CrossRef]
  • Yuan S., Cai Z., Xu G., Jiang Y. (2002) Quantitative structure-property rlationships of surfactants : critical micelle concentration of anionic surfactants, J. Dispers. Sci. Technol. 23, 465-472. [CrossRef]
  • Roberts D.W. (2002) Application of octanol/water partition coefficients in surfactant science : A quantitative structure-property relationship for micellization of anionic surfactants, Langmuir 18, 345-352. [CrossRef]
  • Li X., Zhang G., Dong J., Zhou X., Yan X., Luo M. (2004) Estimation of critical micelle concentration of anionic surfactants with QSPR approach, J. Mol. Struct. Theochem. 710, 119-126. [CrossRef]
  • Katritzky A.R., Pacureanu L., Dobchev D., Karelson M. (2007) QSPR study of critical micelle concentration of anionic surfactants using computational molecular descriptors, J. Chem. Inf. Model. 47, 782-793. [CrossRef] [PubMed]
  • Stanton D.T. (2008) On the importance of topological descriptors in understanding structure-property relationships, J. Comput. Aided Mol. Design 22, 441-460. [CrossRef]
  • Absalan G., Hemmateenejad B., Soleimani M., Akhond M., Miri R. (2004) Quantitative structure-micellization relationship study of gemini surfactants using genetic-PLS and genetic-MLR, QSAR Comb. Sci. 23, 416-425. [CrossRef]
  • Kardanpour Z., Hemmateenejad B., Khayamian T. (2005) Wavelet neural network-based QSPR for prediction of critical micelle concentration of gemini surfactants, Anal. Chim. Acta 531, 285-291. [CrossRef]
  • Guo C.W., Zhou P., Shao J., Yang X.C., Shang Z.C. (2011) Integrating statistical and experimental protocols to model and design novel Gemini surfactants with promising critical micelle concentration and low environmental risk, Chemosphere 84, 1608-1616. [CrossRef] [PubMed]
  • Bhhatarai B., Gramatica P. (2011) Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals, Environ. Sci. Technol. 45, 8120-8128. [CrossRef] [PubMed]
  • Wang Z.-W., Li G.-Z., Mu J.-H., Zhang X.-Y., Lou J. (2002) Quantitative structure-property relationship on prediction of surface tension of nonionic surfactants, Chinese Chem. Lett. 13, 363-366.
  • Wang Z.-W., Huang D.-Y., Li G.-Z., Zhang X.Y., Liao L.-L. (2003) Effectiveness of surface tension reduction by anionic surfactants - quantitative structure-property relationships, J. Dispers. Sci. Technol. 24, 653-658. [CrossRef]
  • Wang Z.-W., Feng J.-L., Wang H.-J., Cui Z.-G., Li G.-Z. (2005) Effectiveness of surface tension reduction by nonionic surfactants with quantitative structure-property relationship approach, J. Dispers. Sci. Technol. 26, 441-447. [CrossRef]
  • Fini M.F., Riahi S., Bahramian A. (2012) Experimental and QSPR studies on the effect of ionic surfactants on n-Decane-Water interfaciale tension, J. Surfactant. Deterg. 15, 477-484. [CrossRef]
  • Needham D.E., Wei I.-Chien, Seybold P.G. (1988) Molecular modeling of the physical properties of alkanes, J. Am. Chem. Soc. 110, 4186-4194. [CrossRef]
  • Stanton D.T., Jurs P.C. (1990) Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies, Anal. Chem. 62, 2323-2329. [CrossRef]
  • Stanton D.T., Jurs P.C. (1992) Computer-assisted study of the relationship between molecular structure and surface tension of organic compounds, J. Chem. Inf. Model. 32, 109-115. [CrossRef]
  • Liu S., Cai S., Cao C., Li Z. (2000) Molecular Electronegative Distance Vector (MEDV) related to 15 properties of alkanes, J. Chem. Inf. Comput. Sci. 40, 1337-1348. [CrossRef] [PubMed]
  • Knotts T.A., Wilding W.V., Oscarson J.L., Rowley R.L. (2001) Use of the DIPPR database for development of QSPR correlations : Surface tension, J. Chem. Eng. Data 46, 1007-1012. [CrossRef]
  • Kauffman G.W., Jurs P.C. (2001) Prediction of surface tension, viscosity and thermal conductivity for common organic solvents using quantitative structure-property relationships, J. Chem. Inf. Comput. Sci. 41, 408-418. [CrossRef] [PubMed]
  • Shamsipur M., Ghavami R., Hemmateenejad B., Sharghi H. (2004) Highly correlating distance-connectivity-based topological indices. 2 : Prediction of 15 properties of a large set of alkanes using a stepwise factor selection-based PCR analysis, QSAR Comb. Sci. 23, 734-753. [CrossRef]
  • Delgado E.J., Diaz G.A. (2006) A molecular structure based model for predicting surface tension of organic compounds, SAR QSAR Environ. Res. 17, 483-496. [CrossRef] [PubMed]
  • Wang J., Du H., Liu H., Yao X., Hu Z., Fan B. (2007) Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine, Talanta 73, 147-156. [CrossRef] [PubMed]
  • Khajeh F., Modarress H. (2011) Quantitative structure-property relationship for surface tension of some common alcohols, J. Chemom. 25, 333-339. [CrossRef]
  • Gharagheizi F., Eslamimanesh A., Mohammadi A.H., Richon D. (2011) Use of artificial neural network-group contribution method to determine surface tension of pure compounds, J. Chem. Eng. Data 56, 2587-2601. [CrossRef]
  • Gharagheizi F., Eslamimanesh A., Tirandazi B., Mohammadi A.H., Richon D. (2011) Handling a very large dataset for determination of surface tension of chemical compounds using quantitative structure-property relationship strategy, Chem. Eng. Sci. 66, 4991-5023. [CrossRef]
  • Davies J.T. (1957) A quantitative kinetic theory of emulsion type. I. Physical chemistry of the emulsifying agent, Proc. 2nd Int. Congr. Surface Activity, Butterworths, London, 1, 426-438.
  • Lin I.J., Marszall L. (1976) CMC, HLB, and effective chain length of surface-active anionic and cationc substances containing oxyethylene groups, J. Colloid Interface Sci. 57, 85-93. [CrossRef]
  • Guo X., Rong Z., Ying X. (2006) Calculation of the hydrophile-lipophile balance for polyethoxylated surfactants by group contribution method, J. Colloid Int. Sci. 298, 441-450. [CrossRef]
  • Chen M.-L., Wang Z.-W., Zhang G.-X., Wang W.-D. (2007) Prediction on hydrophile-lipophile balance values of anionic surfactants with QSPR method, Acta Chim. Sinica 65, 1265-1272.
  • Chen M.-L., Wang Z.-W., Duan H.-J. (2009) QSPR for HLB of nonionic surfactants using two simple descriptors, J. Dispers. Sci. Technol. 30, 1481-1485. [CrossRef]
  • Gad E.A.M., Khairou K.S. (2008) QSPR for HLB of nonionic surfactants based on polyoxyethylene group, J. Dispers. Sci. Technol. 29, 940-947. [CrossRef]
  • Liu S.L., Tong J.B., Li Y.F. (2009) QSPR study of the hydrophile-lipophile balance values of anionic surfactant, Guangdong Chem. 36, 64-65.
  • Luan F., Liu H., Gao Y., Li Q., Zhang X., Guo Y. (2009) Prediction of the hydrophile-lipophile balance values of anionic surfactants using a quantitative structure-property relationship, J. Colloid Int. Sci. 336, 773-779. [CrossRef]
  • Buijse M., Tandon K., Jain S., Handgraaf W., Fraaije J.G.E.M. (2012) Surfactants optimization for EOR using advanced chemical computational methods, SPE International, SPE paper 154212.
  • Muratov E.N., Varlamova E.V., Artemenko A.G., Polishchuk P.G., Kuz’min V.E. (2012) Existing and developing approaches for QSAR analysis of mixtures, Mol. Inf. 31, 202-221. [CrossRef]
  • Lindgren A., Sjostrom M., Wold S. (1996) QSAR modelling of the toxicity of some technical non-ionic surfactants towards fairy shrimps, Quant. Struct.-Property Relationship 15, 208-218. [CrossRef]
  • Jurado E., Fernandez-Serrano M., Nunez-Olea J., Luzon G., Lechuga M. (2009) Acute toxicity and relationship between metabolites and ecotoxicity during the biodegradation process of non-ionic surfactants : fatty-alcohol ethoxylates, nonylphenol polyethoxylate and alkylpolyglucosides, Water Sci. Technol. 59, 2351-2358. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.