IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 2, March-April 2011
IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Page(s) 277 - 290
DOI https://doi.org/10.2516/ogst/2010035
Published online 02 May 2011
  • Lyngfelt A., Leckner B., Mattisson T. (2001) A fluidized-bed combustion process with inherent CO2 separation; application of Chemical-Looping Combustion, Chem. Eng. Sci. 56, 10, 3101-3113. [Google Scholar]
  • Leion H., Mattisson T., Lyngfelt A. (2009) Use of Ores and Industrial Products as Oxygen Carriers in Chemical-Looping Combustion, Energ. Fuel. 23, 4, 2307-2315. [CrossRef] [Google Scholar]
  • Mattisson T., Lyngfelt A., Cho P. (2001) The use of iron oxide as an Oxygen Carrier in Chemical-Looping Combustion of methane with inherent separation of CO2, Fuel 80, 13, 1953-1962. [CrossRef] [Google Scholar]
  • Adánez J., Cuadrat A., Abad A., Gayán P., Diego L.F. de, García-Labiano F. (2010) Ilmenite Activation during Consecutive Redox Cycles in Chemical-Looping Combustion, Energ. Fuel. 24, 1402-1413. [CrossRef] [Google Scholar]
  • Leion H., Lyngfelt A., Johansson M., Jerndal E., Mattisson T. (2008) The use of ilmenite as an Oxygen Carrier in Chemical- Looping Combustion, Chem. Eng. Res. Des. 86, 9A, 1017-1026. [CrossRef] [Google Scholar]
  • Werther J., Wein J. (1994) Expansion Behavior of Gas Fluidized Beds in the Turbulent Regime, AIChE Symposium Series 301, 90, 31-44. [Google Scholar]
  • Davidson J.F., Schüler B.O.G. (1960) Bubble formation at an orifice in an inviscid liquid, T. Institution Chem. Eng. 38, 335-342. [Google Scholar]
  • Wen C.Y., Yu Y.H. (1966) A Generalized Method for Predicting the Minimum Fluidization Velocity, AIChE J. 12, 3, 610-612. [CrossRef] [Google Scholar]
  • Kunii D., Levenspiel O. (1991) Fluidization Engineering, Butterworth-Heinemann, Boston. [Google Scholar]
  • Colakyan M., Levenspiel O. (1984) Elutriation from Fluidized Beds, Powder Technol. 38, 223-232. [CrossRef] [Google Scholar]
  • Püttmann A., Hartge E.-U., Werther J. (2008) Modeling of Fluidized Bed Riser-Regenerator Systems, in Circulating Fluidized Bed Technology IX, Werther J., Nowak W., Wirth K.-E., Hartge E.-U. (eds), TuTech Innovation GmbH, Hamburg. [Google Scholar]
  • Sit S.P., Grace J.R. (1981) Effect of Bubble Interaction on Interphase Mass Transfer in Gas Fluidized Beds, Chem. Eng. Sci. 36, 327-335. [CrossRef] [Google Scholar]
  • Sitzmann W., Werther J., Böck W., Emig G. (1985) Modelling of Fluidized Beds - Determination of suitable Kinetics for Complex Reactions, German Chem. Eng. 8, 5, 301-307. [Google Scholar]
  • Werther J., Hartge E.-U. (2004) A population balance model of the particle inventory in a fluidized-bed reactor/regenerator system, Powder Technol. 148, 113-122. [CrossRef] [Google Scholar]
  • Werther J., Hartge E.-U. (2003) Elutriation and Entrainment, in Handbook of Fluidization and Fluid-Particle Systems, Yang W.C. (ed.), Marcel Dekker, New York. [Google Scholar]
  • Püttmann A., Hartge E.-U., Werther J. (2010) Application of the Flowsheet Simulation Concept to Fluidized Bed Reactor Modeling. Part 1 - Development of a Fluidized Bed Reactor Simulation Module, Chem. Eng. Process. (to be published). [Google Scholar]
  • Werther J., Reppenhagen J. (2003) Attrition. Attrition, in Handbook of Fluidization and Fluid-Particle Systems, Yang W.C. (ed.), Marcel Dekker, New York. [Google Scholar]
  • Merrick D., Highley J. (1974) Particle size reduction and elutriation in a fluidized bed process, AIChE Symposium Series 70, 137, 367-378. [Google Scholar]
  • Thon A., Püttmann A., Hartge E.-U., Heinrich S., Werther J. (2010) Prediction of Catalyst Attrition in an Industrial Fluidized Bed Plant Based on Lab Scale Attrition Tests, in Fluidization XIII, Kim S.D., Kang Y., Lee J.K., Seo Y.C. (eds), New Paradim in Fluidization Engineering, Engineering Conferences International, New York. [Google Scholar]
  • Redemann K., Hartge E.-U., Werther J. (2009) A particle population balancing model for a circulating fluidized bed combustion system, Powder Technol. 191, 1-2, 78-90. [Google Scholar]
  • SolidSim Engineering GmbH (2010) SolidSim, Version 1.2, http://www.solidsim.com/. [Google Scholar]
  • Hartge E.-U., Pogodda M., Reimers C., Schwier D., Gruhn G., Werther J. (2006) Flowsheet Simulation of Solids Processes, KONA 24, 146-158. [Google Scholar]
  • Abad A., Adánez J., García-Labiano F., Diego L.F. de, Gayán P., Celaya J. (2007) Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based Oxygen Carriers in Chemical- Looping Combustion, Chem. Eng. Sci. 62, 1-2, 533-549. [CrossRef] [Google Scholar]
  • García-Labiano F., Adánez J., Diego L.F. de, Gayán P., Abad A. (2006) Effect of Pressure on the Behaviour of Copper-, Iron-, and Nickel-Based Oxygen Carriers for Chemical-Looping Combustion, Energ. Fuel. 20, 26-33. [CrossRef] [Google Scholar]
  • Linderholm C., Mattisson T., Lyngfelt A. (2009) Long-term integrity testing of spray-dried particles in a 10-kW Chemical- Looping combustor using natural gas as fuel, Fuel 88, 11, 2083-2096. [CrossRef] [Google Scholar]
  • Patience G.S., Bockrath R.E. (2010) Butane oxidation process development in a circulating fluidized bed, Appl. Catal. A: Gen. 376, 1-2, 4-12. [CrossRef] [Google Scholar]
  • Thon A., Werther J. (2010) Attrition resistance of a VPO catalyst, Appl. Catal. A: Gen. 376, 1-2, 56-6. [CrossRef] [Google Scholar]
  • Noorman S., van Sint Annaland M., Kuipers H. (2007) Packed Bed Reactor Technology for Chemical-Looping Combustion, Ind. Eng. Chem. Res. 46, 12, 4212-4220. [CrossRef] [Google Scholar]
  • Pröll T., Kolbitsch P., Bolhar-Nordenkampf J., Hofbauer H. (2009) A Novel Dual Circulating Fluidized Bed System for Chemical Looping Processes, AIChE J. 55, 12, 3255-3266. [CrossRef] [Google Scholar]
  • Guo Q., Werther J., Hartge E.-U. (2004) The influence of the distributor pressure drop on the hydrodynamics of a circulating fluidized bed, in Fluidization XI, Arena U., Chirone R., Micchio M., Salatino P. (eds), ECI, New York. [Google Scholar]
  • Muschelknautz E., Greif V., Trefz M. (2006) Zyklone zur Abscheidung von Feststoffen aus Gasen, in VDI-Wärmeatlas, 10th ed., VDI Gesellschaft Verfahrenstechnik und Ingenieurwesen V.D.I. (ed.), Springer-Verlag, Berlin, Heidelberg. [Google Scholar]
  • Zhu J. (2005) Circulating Fluidized Beds - Recent Developments and Research Requirements in the near Future, in Circulating Fluidized Bed Technology VIII, Cen K. (ed.), International Academic Publishers / World Publishing Corporation, Beijing. [Google Scholar]
  • Werther J. (1980) Modeling and Scale-up of Industrial Fluidized-Bed Reactors, Chem. Eng. Sci. 35, 1-2, 372-379. [Google Scholar]
  • Werther J. (1992) Scale-up Modeling for Fluidized-Bed Reactors, Chem. Eng. Sci. 47, 9-11, 2457-2462. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.