IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 2, March-April 2011
IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Page(s) 313 - 331
DOI https://doi.org/10.2516/ogst/2010031
Published online 02 March 2011
  • IPCC Fourth Assessment Report, Paris, France (2007). [Google Scholar]
  • Herzog H., Eliasson B., Kaarstad O. (2000) Capturing greenhouse gases, Sci. Am. 282, 2, 72-79. [Google Scholar]
  • Yang H., Xu Z., Fan M., Gupta R., Slimane R.B., Bland A.E., Wright I. (2008) Progress in carbon dioxide separation and capture: A review, J. Environ. Sci. 20, 14-27. [Google Scholar]
  • Lyngfelt A., Lecker B. (1999) Technologies for CO2 Separation, Proceedings of the Minisymposium on CO2 Capture and Storage, Göteborg, Sweden. [Google Scholar]
  • Knoche K.F., Richter H. (1968) Verbesserung der Reversibilität von Verbrennungsprozessen, Brennst.-Wärme-Kraft 20, 205-210. [Google Scholar]
  • Richter H.J., Knoche K.F. (1983) Reversibility of combustion processes, Efficiency and Costing, Second Law Analysis of Processes, Gaggioli R.A. (ed), ACS Symp. Series 235, 71-85. [CrossRef] [Google Scholar]
  • Lewis W.K., Gilliland E.R. (1954) Production of pure carbon dioxide, US Patent Nos. 2,665,971 and 2,665,972. [Google Scholar]
  • Ishida M., Zheng D., Akehata T. (1987) Evaluation of a Chemical-Looping-Combustion Power-Generation System by Graphic Exergy Analysis, Energy 12, 2, 147-154. [CrossRef] [Google Scholar]
  • Ishida M., Jin H.G. (1994) A New Advanced Power-Generation System Using Chemical-Looping Combustion, Energy 19, 4, 415-422. [CrossRef] [Google Scholar]
  • Hendriks C.A., Blok K., Turkenburg W.C. (1993) Promising Options to Remove Carbon Dioxide from Power Plants, Proceedings of the International Symposium on CO2 Fixation and Efficient Utilization of Energy, Tokyo, Japan. [Google Scholar]
  • Naqvi R., Wolf J., Bolland O. (2007) Part-load analysis of a Chemical-Looping Combustion (CLC) combined cycle with CO2 capture, Energy 32, 360-370. [CrossRef] [Google Scholar]
  • Lyngfelt A., Leckner B., Mattisson T. (2001) A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion, Chem. Eng. Sci. 56, 10, 3101- 3113. [Google Scholar]
  • Son S.R., Kim S.D. (2006) Chemical-Looping Combustion with NiO and Fe2O3 in a Thermobalance and Circulating Fluidized Bed Reactor with Double Loops, Ind. Eng. Chem. Res. 45, 8, 2689-2696. [CrossRef] [Google Scholar]
  • Gnanapragasam N.V., Reddy B.V., Rosen M.A. (2009) Hydrogen production from coal using coal direct chemical looping and syngas chemical looping combustion systems: Assessment of system operation and resource requirements, Int. J. Hydrogen Energ. 34, 2606-2615. [CrossRef] [Google Scholar]
  • Fan L., Li F., Ramkumar S. (2008) Utilization of chemical looping strategy in coal gasification processes, Particuology 6, 131-142. [CrossRef] [Google Scholar]
  • Noorman S., Annaland M.V., Kuipers H. (2007) Packed bed reactor technology for chemical-looping combustion, Ind. Eng. Chem. Res. 46, 12, 4212-4220. [CrossRef] [Google Scholar]
  • Noorman S., Annaland M.V., Kuipers J.A.M. (2009) Experimental validation of packed bed chemical-looping combustion, Chem. Eng. Sci. (in press). [Google Scholar]
  • Kim B.S., Sohn H.Y. (2002) A novel cyclic reaction system involving CaS and CaSO4 for converting sulfur dioxide to elemental sulfur without generating secondary pollutants. 3. Kinetics of the hydrogen reduction of the calcium sulfate powder to calcium sulfide, Ind. Eng. Chem. Res. 41, 13, 3092-3096. [CrossRef] [Google Scholar]
  • Andrus H.E., Chiu J.H., Thibeault P.R., Brautsch A. (2009) Alstom’s calcium oxide chemical looping combustion coal power technology development, Proceedings of the 34th Internaional Technical Conference on Clean Coal & Fuel Systems, Clearwater, Florida, USA. [Google Scholar]
  • Hossaina M.M., de Lasa H.I. (2008) Chemical-looping combustion (CLC) for inherent CO2 separations - a review, Chem. Eng. Sci. 63, 18, 4433-4451. [CrossRef] [Google Scholar]
  • Abad A., Mattisson T., Lyngfelt A., Ryden M. (2006) Chemicallooping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier, Fuel 85, 9, 1174-1185. [CrossRef] [Google Scholar]
  • De Diego L.F., Garcia-Labiano F., Gayan P., Celaya J., Palacios J.M., Adanez J. (2007) Operation of a 10 kWth chemical-looping combustor during 200 h with a CuO-Al2O3 oxygen carrier, Fuel 86, 7-8, 1036-1045. [CrossRef] [Google Scholar]
  • Berquerand N., Lyngfelt A. (2008) The use of petroleum coke as fuel in a 10 kW(th) chemical-looping combustor, Int. J. Greenhouse Gas Control 2, 2, 169-179. [CrossRef] [Google Scholar]
  • Berguerand N., Lyngfelt A. (2008) Design and operation of a 10 kW(th) chemical-looping combustor for solid fuels - Testing with South African coal, Fuel 87, 12, 2713-2726. [CrossRef] [Google Scholar]
  • Adanez J., Dueso C., de Diego L.F., Garcia-Labiano F., Gayan P., Abad A. (2009) Methane Combustion in a 500 W-th Chemical- Looping Combustion System Using an Impregnated Ni-Based Oxygen Carrier, Energ. Fuel. 23, 1, 130-142. [CrossRef] [Google Scholar]
  • Kolbitsch P., Bolhar-Nordenkampf J., Proll T., Hofbauer H. (2009) Comparison of Two Ni-Based Oxygen Carriers for Chemical Looping Combustion of Natural Gas in 140 kW Continuous Looping Operation, Ind. Eng. Chem. Res. 48, 11, 5542-5547. [Google Scholar]
  • Epple B., Stroehle J. (2008) CO2 Capture based on carbonate and chemical looping, VGB Powertech 11, 85-88. [Google Scholar]
  • Li F., Fan L.S. (2008) Coal conversion processes – progress and challenges, Energ. Environ. Sci. 1, 248-267. [CrossRef] [Google Scholar]
  • Simsek E., Brosch B., Wirtz S., Scherer V., Krüll F. (2009) Numerical Simulation of Grate Firing Systems using a Coupled CFD / Discrete Element Method (DEM), Powder Technol. 193, 266-273. [CrossRef] [Google Scholar]
  • Kruggel-Emden H., Stepanek F., Munjiza A. (2009) Discrete element methods for large scale particle/fluid simulations, ASME Pressure Vessels & Piping Conference, Prague, Czech Republic. [Google Scholar]
  • Ding J., Gidaspow D. (1990) A bubbling fluidization model using kinetic theory of granular flow, AIChE J. 32, 1, 523-538. [CrossRef] [Google Scholar]
  • Patil D.J., Annaland M.V., Kuipers J.A.M. (2004) Critical comparison of hydrodynamic models for gas–solid fluidized bedspart I: Bubbling gas–solid fluidized beds operated with a jet, Chem. Eng. Sci. 60, 1, 57-72. [Google Scholar]
  • Patil D.J., Annaland M.V., Kuipers J.A.M. (2004) Critical comparison of hydrodynamic models for gas–solid fluidized bedspart II: Freely bubbling gas–solid fluidized beds, Chem. Eng. Sci. 60, 1, 73-84. [Google Scholar]
  • Enwald H., Almstedt A.E. (1999) Fluid dynamics of a pressurized fluidized bed: Comparison between numerical solutions from two-fluid models and experimental results, Chem. Eng. Sci. 54, 329-342. [CrossRef] [Google Scholar]
  • Cooper S., Coronella C.J. (2005) CFD Simulation of particle mixing in a binary fluidized bed, Powder Technol. 151, 27-36. [CrossRef] [Google Scholar]
  • Vaishali S., Roy S., Mills P.L. (2008) Hydrodynamic simulation of gas–solids downflow reactors, Chem. Eng. Sci. 63, 5107-5119. [CrossRef] [Google Scholar]
  • Gryczka O., Heinrich S., Deen N.G., Annaland M.V., Kuipers J.A.M., Jacob M., Moerl L. (2009) Characterization and CFDmodeling of the hydrodynamics of a prismatic spouted bed apparatus, Chem. Eng. Sci. 64, 3352-3375. [CrossRef] [Google Scholar]
  • Jung J.W., Gamwo I.K. (2008) Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling, Powder Technol. 183, 3, 401-409. [CrossRef] [Google Scholar]
  • Ryu H.J., Bae D.H., Han K.H., Lee S.Y., Jin G.T., Choi J.H. (2001) Oxidation and reduction characteristics of oxygen carrier particles and reaction kinetics by unreacted core model, Korean J. Chem. Eng. 18, 831-837. [CrossRef] [Google Scholar]
  • Levenspiel O. (1998) Chemical Reaction Engineering, New York, John Wiley and Sons. [Google Scholar]
  • Syamlal M., Rogers W., O’Brien T.J. (1993) MFIX documentation theory guide, Technical Note, DOE/METC-94/1004, NTIS/DE94000087, U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center Morgantown, WV, National Technical Information Service, Springfield, VA. [Google Scholar]
  • Deng Z.Y., Xiao R., Jin B.S., Song Q.L., Huang H. (2008) Multiphase CFD Modeling for a Chemical Looping Combustion Process (Fuel Reactor), Chem. Eng. Technol. 31, 12, 1754-1766. [CrossRef] [Google Scholar]
  • Deng Z.Y., Xiao R., Jin B.S., Song Q.L. (2009) Numerical simulation of chemical looping combustion process with CaSO4 oxygen carrier, Int. J. Greenhouse Gas Control 3, 4, 368-375. [CrossRef] [Google Scholar]
  • Jin B.S., Xiao R., Deng Z.Y., Song Q.L. (2009) Computational Fluid Dynamics Modeling of Chemical Looping Combustion Process with Calcium Sulphate Oxygen Carrier, Int. J. Chem. Reactor Eng. 7, A19. [Google Scholar]
  • Xu M., Ellis N., Ryu H.J., Lim C.J. (2007) Modeling of an Interconnected Fluidized Bed Reactor for Chemical Looping Combustion, The 12th International Conference on Fluidization, Vancouver, Canada. [Google Scholar]
  • Bolhar-Nordenkampf J., Proll T., Kolbitsch P., Hofbauer H. (2009) Comprehensive Modeling Tool for Chemical Looping Based Processes, Chem. Eng. Technol. 32, 3, 410-417. [CrossRef] [Google Scholar]
  • Kolbitsch P., Proll T., Hofbauer H. (2009) Modeling of a 120 kW chemical looping combustion reactor system using a Nibased oxygen carrier, Chem. Eng. Sci. 64, 1, 99-108. [CrossRef] [Google Scholar]
  • Kruggel-Emden H., Rickelt S., Stepanek F., Munjiza A. (2010) Development and testing of an interconnected multiphase CFDmodel for chemical looping combustion, Chem. Eng. Sci. 65, 16, 4732-4745. [CrossRef] [Google Scholar]
  • Gidaspow D. (1994) Multiphase Flow and Fluidization, Academic Press, San Diego. [Google Scholar]
  • Kruggel-Emden H., Stepanek F., Munjiza A. (2009) A comparative study of reaction models for chemical looping combustion, Comput. Chem. Eng. (submitted). [Google Scholar]
  • Zafar Q., Abad A., Mattisson T., Gevert B., Strand M. (2007) Reduction and oxidation kinetics of Mn3O4/Mg-ZrO2 oxygen carrier particles for chemical-looping combustion, Chem. Eng. Sci. 62, 6556-6567. [CrossRef] [Google Scholar]
  • Johansson M., Mattisson T., Lyngfelt A. (2006) Investigation of Mn3O4 with stabilized ZrO2 for chemical-looping combustion, Chem. Eng. Res. Des. 84, A9, 807-818. [CrossRef] [Google Scholar]
  • Zafar Q., Abad A., Mattisson T., Gevert B. (2007) Reaction kinetics of freeze-granulated NiO/MgAl2O4 oxygen carrier particles for chemical-looping combustion, Energ. Fuel. 21, 2, 610-618. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.