Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 62, Number 5, September-October 2007
Page(s) 701 - 706
DOI https://doi.org/10.2516/ogst:2007048
Published online 30 October 2007
  • Sloan, E.D. (1998) Clathrate Hydrates of Natural Gases, 2nd ed., Marcel Dekker Inc., New York. [Google Scholar]
  • Sloan, E.D. (2005) A changing hydrate paradigm – from apprehension to avoidance to risk management. Fluid Phase Equilib., 228-229, 67-74. [Google Scholar]
  • Heriot-Watt University Hydrate Group Website: http://www.pet.hw.ac.uk/research/hydrate/ [Google Scholar]
  • Mohammadi, A.H. and Tohidi, B. (2005) A Novel Predictive Technique for Estimating the Hydrate Inhibition Effects of Single and Mixed Thermodynamic Inhibitors. Can. J. Chem. Eng., 83, 6, 951-961. [Google Scholar]
  • Rivollet, F. (2005) Étude des propriétés volumétriques (PVT)d'hydrocarbures légers (C1-C4), du dioxyde de carbone et de l'hydrogène sulfuré : Mesures par densimétrie à tube vibrant et modélisation. PhD thesis, Paris School of Mines, France (In French). [Google Scholar]
  • Wilamowski, B.,Iplikci, S.,Kayank, O. and Efe, M.O. (2001) International Joint Conference on Neural Networks (IJCNN'01), Washington DC, 15-19 July, pp. 1778-1782. [Google Scholar]
  • Marquardt, D. (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM J. Appl. Math., 11, 431-441 [Google Scholar]
  • .Levenberg K. (1944) A Method for the Solution of Certain Problems in Least Squares. Quart. Appl. Math., 2, 164-168. [Google Scholar]
  • Chouai, A.,Laugier, S. and Richon, D. (2002) Modeling of thermodynamic properties using neural networks: Application to refrigerant. Fluid Phase Equilib., 199, 53-62. [Google Scholar]
  • Piazza, L.,Scalabrin, G.,Marchi, P. and Richon, D. (2006) Enhancement of the extended corresponding states techniques for thermodynamic modelling. I. Pure fluids. Int. J. Refrig., 29, 7, 1182-1194. [Google Scholar]
  • Scalabrin, G.,Marchi, P.,Bettio, L. and Richon, D. (2006) Enhancement of the extended corresponding states techniques for thermodynamic modelling. II. Mixtures. Int. J. Refrig., 29, 7, 1195-1207. [Google Scholar]
  • Schmitz, J.E.,Zemp, R.J. and Mendes, M.J. (2006) Artificial neural networks for the solution of the phase stability problem. Fluid Phase Equilib., 245, 83-87. [Google Scholar]
  • Elgibaly, A.A. and Elkamel, A.M. (1998) A new correlation for predicting hydrate formation conditions for various gas mixtures and inhibitors. Fluid Phase Equilib., 152, 23-42. [Google Scholar]
  • Holder, G.D. and Grigoriou, G.C. (1980) Hydrate dissociation pressures of (methane + ethane + water) existence of a locus of minimum pressures. J. Chem. Therm., 12, 1093-1104. [CrossRef] [Google Scholar]
  • Deaton, W.M. and Frost, E.M. (1946) Gas hydrate composition and equilibrium data. Oil Gas J., 45, 170-178. [Google Scholar]
  • Ng, H.J. and Robinson, D.B. (1985) Hydrate Formation in Systems Containing Methane, Ethane, Propane, Carbon Dioxide or Hydrogen Sulfide in the Presence of Methanol. Fluid Phase Equilib., 21, 145-155. [Google Scholar]
  • Robinson, D.B. and Ng, H.J. (1986) Hydrate formation systems containing methane, hydrogen sulphide and carbon dioxide. J. Can. Pet. Tech., 10, 33-35. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.