Dossier: Deformation of Solid Polymers
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Number 6, November-December 2006
Dossier: Deformation of Solid Polymers
Page(s) 735 - 742
Published online 01 January 2007
  • Series of International Conferences have been running for more than three decades, at roughly one per year rate: “International Gas Research Conferences”, org.: Gas Technology Institute, Des Plaines IL, USA; “Plastics Pipes”, org.: Institute of Materials, London, UK; “Plastic Pipe Fuel Gas Symposia”, org: Plastics Pipe Institute, Washington D.C., USA; “Plastic Fuel Gas Pipe Symposium”, org.: American Gas Association, Washington D.C., USA.
  • Friedrich, K. (1983) Crazes and shear bands in semi-crystalline thermoplastics, Adv. Polym. Sci. 52/53, 225-227.
  • Plummer, C.J.G. (2004) Microdeformation and fracture in bulk polyolefins, Adv. Polym. Sci. 169, 75-119. [CrossRef]
  • Meinel, G.,Peterlin, A. (1971) Plastic deformation of polyethylene. II. Change of mechanical properties during drawing, J. Polym. Sci. A2 9, 67-83. [CrossRef]
  • Peterlin, A.,Meinel, G. (1971) Small-angle X-ray diffraction studies of plastically deformed polyethylene. III. Small draw ratios, Makromolecul. Chem. 142, 227-240. [CrossRef]
  • Shah, A.,Stepanov, E.V.,Klein, M.,Hiltner, A.,Baer, E. (1998) Study of polyethylene pipe resins by a fatigue test that simulates crack propagation in a real pipe, J. Mater. Sci. 33, 3313-3319. [CrossRef]
  • Plummer, C.J.,Goldberg, A.,Ghanem, A. (2001) Micromechanisms of slow crack growth in polyethylene under constant tensile loading, Polymer 42, 9551-9564. [CrossRef]
  • Huang, Y.-L.,Brown, N. (1988) Effect of molecular weight on slow crack growth in linear polyethylene homopolymers, J. Mater. Sci. 23, 3648-3655. [CrossRef]
  • Huang, Y.-L.,Brown, N. (1991) Dependence of slow crack growth in polyethylene on butyl branch density: morphology and theory, J. Polym. Sci. A2 29, 129-137. [CrossRef] [MathSciNet]
  • Rose, L.J.,Channell, A.D.,Frye, C.J.,Capaccio, G. (1994) Slow crack growth in polyethylene: a novel predictive model based on the creep of craze fibrils, J. Appl. Polym. Sci. 54, 2119-2124. [CrossRef]
  • Hubert, L., David, L., Seguela, R., Vigier, G., Corfias- Zuccall, C., Germain, Y. (2002) Physical and mechanical properties of polyethylene for pipes in relation to molecular architecture. II. Short-term creep of isotropic and drawn materials, J. Appl. Polym. Sci. 84, 2308-2317.
  • Lagaron, J.M.,Dixon, N.M.,Gerrard, D.I.,Reed, W.,Kip, B.J. (1998) Cold-drawn material as model material for the environmental stress cracking in polyethylene. Raman spectroscopy study of molecular stress induced by macroscopic strain in drawn polyethylenes and their relation to environmental stress cracking, Macromolecules 31, 5845-5852. [CrossRef]
  • Hosoda, S.,Uemura, A. (1992) Effect of the structural distribution on the mechanical properties of linear low-density polyethylenes, Polymer J. 24, 939-949. [CrossRef]
  • Gueugnaut, D.,Rousselot, D. (1999) Detection of divergences in polyethylene resins fabrication by means of the modified stepwise isothermal segregation technique, J. Appl. Polym. Sci. 73, 2103-2112. [CrossRef]
  • Wunderlich, B. (1973) Macromolecular Physics; Vol.1: Crystal Structure, Morphology, Defects. Academic Press, New York.
  • Hoffman, J.D.,Guttman, C.M., Di Marzio, E.A. (1979) On the problem of crystallisation of polymers from the melt with chain folding, Faraday Discuss. Chem. S. 68, 177-197. [CrossRef]
  • Hoffman, J.D.,Miller, R.L. (1997) Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment, Polymer 38, 3151-3212. [CrossRef]
  • Ward, I.M. (1980) Mechanical Properties of Solid Polymers. Wiley Interscience, New York.
  • Tarin, P.M.,Thomas, E.L. (1979) The role of inter- and intralinks in the transformation of folded chain lamellae into microfibrils, Polym. Eng. Sci. 19, 1017-22. [CrossRef]
  • Hosemann, R., Bagchi, S.N. (1962) Direct Analysis of Diffraction by Matter. North-Holland publishing Comp., Amsterdam.
  • Reinhold, C.,Fischer, E.W.,Peterlin, A. (1964) Evaluation of small-angle X-ray scattering of polymers, J. Appl. Phys. 35, 71-74. [CrossRef]
  • Hall, H.,Mahmoud, E.A.,Carr, P.D.,Geng, Y.D. (1987) Small-angle X-ray scattering by crystalline polymer fibers. 1. Experimental method and investigation of the linear paracrystalline model, Colloid. Polym. Sci. 265, 383-93. [CrossRef]
  • Annadurai, V.,Gopalkrishne, R.,Siddaramaiah, R.,Somashekar, R. (2000) Small angle X-ray scattering in nylon 6 using exponential distribution of phase lengths, Polymer 41, 5689-5694. [CrossRef]
  • Hubert, L.,David, L.,Seguela, R.,Vigier, G.,Degoulet, C.,Germain, Y. (2001) Physical and mechanical properties of polyethylene for pipes in relation to molecular architecture. I. Microstructure and crystallization kinetics, Polymer 42, 8425-8434. [CrossRef]
  • Monasse, B.,Haudin, J.M. (1985) Growth transition and morphology changes in polypropylene, Colloid. Polym. Sci. 263, 822-831. [CrossRef]
  • Seguela, R.,Rietsch, F. (1986) Tensile drawing behaviour of ethylene/Formula -olefin copolymers: influence of the co-unit concentration, Polymer 27, 703-708. [CrossRef]
  • Gaucher, V.,Seguela, R. (1994) Phase partitioning of the chain defects in ethylene-butene in the framework of the crystalline chain kink model, Polymer 35, 2049-2055. [CrossRef]
  • Bensason, S.,Minick, J.,Moet, A.,Chum, S.,Hiltner, A.,Baer, E. (1996) Classification of homogeneous ethylene octene copolymers based on comonomer content, J. Polym. Sci. A2 34, 1301-1315. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.