- Abanades, J.C. and Alvarez, D. (2003) The Conversion Limits in the Reaction of CO2 with Lime. Energy and Fuels, 17, 2, 308-315. [CrossRef] [Google Scholar]
- Abanades, J.C.,Anthony, E.J.,Alvarez, D.,Lu, D.Y. and Salvador, C. (2004) Capture of CO2 from Combustion Gases in a Fluidized Bed of CaO. AIChE J, 50, 7, 1614-1622. [CrossRef] [Google Scholar]
- Abanades, J.C.,Rubin, E.S. and Anthony, E.J. (2004) Sorbent Cost and Performance in CO2 Capture Systems. Ind. Eng. Chem. Res., 43, 3462-3466. [CrossRef] [Google Scholar]
- Areklett, I. and Nygaard, L.P. (2002) Future Energy Plants, Greenhouse Issues, IEA Greenhouse Gas R&D Programme, 59 [Google Scholar]
- Berger, R et al. (2003) Innovative in situ CO2 Capture Technology for Solid Fuel Gasification. act SES6-CT-2003-502743. www.eu-projects.de. [Google Scholar]
- Curran, G.P.,Fink, C.E. and Gorin, E. (1967) Carbon Dioxide- Acceptor Gasification Process. Studies of Acceptor Properties. Adv. Chem. Ser., 69, 141. [CrossRef] [Google Scholar]
- Falk-Pedersen, O., Dannström, H., Grønvold, M., Stuksrud, D.B., and Rønning, O. (1998) Gas Treatment Using Membrane Gas/ Liquid Contractors, Greenhouse Gas Control Technologies. Riemer, P., Eliasson, B. and Wokaun, A. (eds.), Elsevier Science Ltd., Kidlington, United Kingdom, 115-120. [Google Scholar]
- Feron, P.H.M. (1994) Membranes for Carbon Dioxide Recovery from Power Plants. In: Carbon Dioxide Chemistry, Environmental Issues, Paul, J. and Pradier, C.M. (eds.), The Royal Society of Chemistry, Cambridge, United Kingdom, 236-249. [Google Scholar]
- Feron, P.H.M., and Jansen, A.E. (1995) Capture of Carbon Dioxide Using Membrane Gas Absorption and Reuse in the Horticultural Industry. Energy Convers. Mgmt., 36, 6-9, 411-414. [Google Scholar]
- Feron, P.H.M and Jansen, A.E. (2002) CO2 Separation with Polyolefin Membrane Contactors and Dedicated Absorption Liquids. Performances and Prospects, Separation and Purification Technology, 27, 3, 231-242. [Google Scholar]
- Herzog, H.,Golomb, D. and Zemba, S. (1991) Feasibility, Modeling and Economics of Sequestering Power Plant CO2 Emissions in the Deep Ocean. Environmental Progress, 10, 1, 64-74. [CrossRef] [Google Scholar]
- Hirama, T., Hosoda H., Kitano, K. and Shimizu T. (1994) UK Patent Application GB 2291051 A. [Google Scholar]
- Hufton JR, Mayorga S. and Sircar, S. (1999) Sorption Enhanced Reaction Process for Hydrogen Production. AIChemE Journal, February [Google Scholar]
- Kato, M., Essaki, K., Yoshikawa, S., Nakagawa, K. and Uemoto, H. (2002) Novel CO2 Absorbents Using Lithium-Containing Oxides. 6th International Conference on Greenhouse Gas Control Technologies, Paper CAABP2, Kyoto, Japan. [Google Scholar]
- Lin, S.Y.,Suzuki, Y.,Hatano, H. and Harada, M. (2002) Developing an Innovative Method HyPr-RING to Produce Hydrogen from Hydrocarbons. Energy Conversion and Management, 43, 9-12, 1283. [CrossRef] [Google Scholar]
- Lyngfelt, A., Leckner, B. and Mattisson, T. (2001) A Fluidized- Bed Combustion Process with Inherent CO2 Separation; Application of Chemical-Looping Combustion. Chemical Engineering Science, 56, 3101-3113. [CrossRef] [Google Scholar]
- Lyngfelt, A. and Thunman, H. (2004) Construction and 100 h of Operational Experience of a 10-kW Chemical Looping Combustor. To Appear as Chapter 36 in: The CO2 Capture and Storage Project (CCP) for Carbon Dioxide Storage in Deep Geologic Formations For Climate Change Mitigation, 1: Capture and Separation of Carbon Dioxide From Combustion Sources. Thomas, D. (ed.) Elsevier Science, London. [Google Scholar]
- Lyngfelt, A., Kronberger, B., Adanez, J., Morin, J.X. and Hurst, P. (2004) The GRACE Project. Development of Oxygen Carrier Particles for Chemical-Looping Combustion. Design and Operation of a 10 kW Chemical-Looping Combustor. 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, 5th-9th September. [Google Scholar]
- Marion, J., Mohn, N., Liljedahl, G.N., Nsakala, N., Morin, J.X. and Henriksen, P.P. (2004) Technology Options For Controlling CO2 Emissions From Fossil-Fuelled Power Plants. 3rd Annual Conference on Carbon Capture and Sequestration, May 3-6, Alexandria, VA, USA. [Google Scholar]
- Nakagawa, K. and Ohashi, T. (1998) A Novel Method of CO2 Capture from High Temperature Gases. J. Electrochem. Soc., 145, 4, 1344-1346. [CrossRef] [Google Scholar]
- Nsakala, N., Liljedahl, G., Marion, J., Bozzuto, C., Andrus, H. and Chamberland, R. (2003) Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers. 2nd Annual Conference on Carbon Capture and Sequestration. May 5-8, Alexandria, VA, USA. [Google Scholar]
- Ryu et al. (2004) Poster presented at the 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, September 5-9. [Google Scholar]
- Shimizu, T., Hirama, T., Hosoda, H., Kitano, K., Inagaki, M. and Tejima, K. (1999) A Twin Fluid-Bed Reactor for Removal of CO2 from Combustion Processes. Trans. I. Chem. E., 77-A, 62. [Google Scholar]
- Silaban, A. and Harrison, D.P. (1995) High Temperature Capture of Carbon Dioxide: Characteristics of the Reversible Reaction between CaO(s) and CO2(g). Chem. Eng. Comm., 137, 177. [CrossRef] [Google Scholar]
- Simmonds, M., Miracca, I. and Gerdes, K. (2004) Oxyfuel Technologies for CO2 Capture: a Techno-Economic Overview. The 7th International conference on Greenhouse Gas Control Technologies, Vancouver, Canada, September 5-9. [Google Scholar]
- Sundkvist, S.G., Griffin, T. and Thorshaug, N.P. (2001) AZEP - Development of an Integrated Air Separation Membrane - Gas Turbine. Second Nordic Minisymposium on Carbon Dioxide Capture and Storage, Chalmers University of technology, Göteborg, Sweden, October 26. [Google Scholar]
- Sundkvist, S.G., Klang, î, Sj�, M., Wilhelmsen, K., ijen, K., Tintinelli, A., McCahey, S. and Ye, H. (2004) AZEP Gas Turbine Combined Cycle Power Plants - Thermal Optimisation and LCA Analysis. The 7th International Conference on Greenhouse Gass Control Technologies, Vancouver, Canada, September 5-9. [Google Scholar]
- Van der Sluijs, J.P.,Hendriks, C.A. and Blok, K. (1992) Feasibility of Polymer Membranes for Carbon Dioxide Recovery from Flue Gases. Energy Convers. Mgmt., 33, 5-8, 429-436. [CrossRef] [Google Scholar]
- Wang, J., Anthony, E.J. and Abanades, J.C. (2003) A Simulation Study for Fluidized Bed Combustion of Petroleum Coke with CO2 Capture. 17th Int. Conf. on Fluidized Bed Combustion, ASME, Jacksonville, FL, USA. [Google Scholar]
- Ziock, H.J., Brosha, E.L., Garzon, F.H., Guthrie, G.D., Mukundan, R., Robinson, T.W., Roop, B., Smith, B.F., Johnson, A.A., Lackner, K.S., Lau, F., Anthony, E.J., Wang, J. and J. Ruby (2002) Technical Progress in the Development of Zero Emission Coal Technologies, 19th Annual Pittsburgh Coal Conference, Pittsburgh, PA, USA. [Google Scholar]
Issue |
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Number 3, May-June 2005
Dossier: CO2 Capture and Geological Storage: State-of-the-Art
|
|
---|---|---|
Page(s) | 497 - 508 | |
DOI | https://doi.org/10.2516/ogst:2005031 | |
Published online | 01 December 2006 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.