Dossier: CO2 Capture and Geological Storage: State-of-the-Art
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 60, Number 3, May-June 2005
Dossier: CO2 Capture and Geological Storage: State-of-the-Art
Page(s) 461 - 474
DOI https://doi.org/10.2516/ogst:2005028
Published online 01 December 2006
  • Aboudheir, A.,Tontiwachwuthikul, P.,Chakma, A. and Idem, R. (2003) Kinetics of the Reactive Absorption of Carbon Dioxide in High CO2-Loaded, Concentrated Aqueuous Monoethanolamine Solutions. Chemical Engineering Science, 58, 5195-5210. [CrossRef] [Google Scholar]
  • Audus, H. (1998) Leading Options for the Capture of CO2 at Power Stations, Greenhouse Gas Control Technologies. Riemer, P., Eliasson, B., Wokaun, A. (eds.), Elsevier Science, Ltd., Kidlington, United Kingdom, 91-96. [Google Scholar]
  • Aresta, M. and Dibenedetto, A. (2003) New Amines for the Reversible Absorption of Carbon Dioxide from Gas Mixtures, Greenhouse Gas Control Technologies, Vol. II, J. Gale, Y. Kaya, Elsevier Science, Ltd., Kidlington, United Kingdom, 1599-1602. [Google Scholar]
  • Arnold, D.S., Barrett, D.A. and Isom, R.H. (1982) CO2 can be Produced from Flue Gas. Oil & Gas Journal, 130-136, November. [Google Scholar]
  • Baltus, R.E,Counce, R.M.,Culbertson, B.H.,Luo, H.,DePaoli, D.W.,Dai, S. and Duckworth, D.C. (2005) Examination of the Potential of Ionic Liquids for Gas Separations. Separation Science and Technology, 40, 525-541. [CrossRef] [Google Scholar]
  • Barchas, R. and Davis, R. (1992) The Kerr-McGee/ABB Lummus Crest Technology for the Recovery of CO2 from Stack Gases. Energy Convers. Mgmt, 33, 5-8, 333-340. [CrossRef] [Google Scholar]
  • Bozzuto, C., Scheffknecht, G. and Fouilloux, J.P. (2001) Clean Power Generation Technologies Utilising Solid Fuels. Presentation to World Energy Council, 18th Congress, Buenos Aries, October. [Google Scholar]
  • Chakma, A. (1995) An Energy Efficient Mixed Solvent for the Separation of CO2. Energy Convers. Mgmt., 36, 6-9, 427-430. [CrossRef] [Google Scholar]
  • Chakma, A. and Tontiwachwuthikul, P. (1999) Designer Solvents for Energy Efficient CO2 Separation from Flue Gas Streams. Greenhouse Gas Control Technologies. Riemer, P., Eliasson, B., Wokaun, A. (eds.), Elsevier Science, Ltd., Kidlington, United Kingdom, 35-42. [Google Scholar]
  • Chakravarty, S., Gupta, A. and Hunek, B. (2001) Advanced Technology for the Capture of Carbon Dioxide from Flue Gases. Paper presented at First National Conference on Carbon Sequestration, Washington DS, May 15-17. [Google Scholar]
  • Chapel, D., Ernst, J. and Mariz, C. (1999) Recovery of CO2 from Flue Gases: Commercial Trends. Paper No. 340 at Canadian Society of Chemical Engineers, Saskatoon, Canada. [Google Scholar]
  • Chen, H.,Kovvali, A.S.,Majumdar, S. and Sirkar, K.K. (1999) Selective CO2 Separation from CO2-N2 Mixtures by Immobilised Carbonate-Glycerol Membranes. Ind. Eng. Chem., 38, 3489-3498. [CrossRef] [Google Scholar]
  • Chinn, D., Choi, G.N., Chu, R. and Degen, B. (2004) Cost Efficient Amine Plant Design for Post Combustion CO2 Capture from Power Plant Flue Gas. Paper presented at GHGT-7, Vancouver. [Google Scholar]
  • Cullinane, J.T. and Rochelle, G.T. (2002) Carbon Dioxide Absorption with Aqueous Potassium Carbonate Promoted by Piperazine, Greenhouse Gas Control Technologies, Vol. II, J. Gale, Y. Kaya, Elsevier Science, Ltd., Kidlington, United Kingdom, 1603-1606. [Google Scholar]
  • EIS (2000) Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project, US Department of Energy, June. [Google Scholar]
  • Erga, O.,Juliussen, O. and Lidal, H. (1995) Carbon Dioxide Recovery by Means of Aqueous Amins. Energy. Convers. Mgmt., 36, 6-9, 387-392. [CrossRef] [Google Scholar]
  • Feron, P.H.M. (1992) Carbon Dioxide Capture: The Characterisation of Gas Separation/Removal Membrane Systems Applied to the Treatment of Flue Gases Arising from Power Plant Generation Using Fossiel Fuel. IEA/92/08, IEA Greenhouse Gas R&D programme, Cheltenham, United Kingdom. [Google Scholar]
  • Feron, P.H.M. (1994) Membranes for Carbon Dioxide Recovery from Power Plants. In: Carbon Dioxide Chemistry: Environmental Issues. Paul, J., Pradier, C.M. (eds.), The Royal Society of Chemistry, Cambridge, United Kingdom, 236-249. [Google Scholar]
  • Feron, P.H.M. and N.A.M. ten Asbroek (2004) New Solvents Based on Amino-Acid Salts for CO2 Capture from Flue Gases. Paper presented at GHGT-7, Vancouver. [Google Scholar]
  • Herzog, H.,Golomb, D. and Zemba, S. (1991) Feasibility, Modeling and Economics of Sequestering Power Plant CO2 Emissions in the Deep Ocean. Environmental Progress, 10, 1, 64-74. [CrossRef] [Google Scholar]
  • IEA GHG R&D Programme (2004) Improvement in Power Generation with Post-Combustion Capture of CO2. Report number PH4/33. [Google Scholar]
  • IFRF Combustion File 87. [Google Scholar]
  • Kovvali, A.S. and Sirkar, K.K. (2001) Dendrimer Liquid Membranes: CO2 Separation from Gas Mixtures. Ind. Eng. Chem., 40, 2502-2511. [CrossRef] [Google Scholar]
  • Leites, I.L. (1998) The Thermodynamics of CO2 Solubility in Mixtures Monoethanolamine with Organic Solvents and Water and Commercial Experience of Energy Saving Gas Purification Technology. Energy Convers Mgmt., 39, 1665-1674. [CrossRef] [Google Scholar]
  • Leites, I.L.,Sama, D.A. and Lior, N. (2003) The Theory and Practice of Energy Saving in the Chemical Industry: Some Methods for Reducing Thermodynamic Irreversibility in Chemical Technology Processes. Energy, 28, 1, 55-97. [CrossRef] [MathSciNet] [Google Scholar]
  • Mano, H., Kazama, S. and Haraya, K. (2003) Development of CO2 Separation Membranes (1) Polymer Membrane, In Greenhouse Gas Control Technologies. J. Gale and Y. Kaya (eds.), Elsevier Science, Ltd., Kidlington, United Kingdom, 1551-1554. [Google Scholar]
  • Marchetti, M.M, Czarnecki, T.S., Semedard, J.C., Lemasle, J.M. and Devroe, S. (2003) Alstom’s Large CFB’s and Results. 17th International Conference on Fluidised Bed Combustion, Jacksonville Florida USA, 18th to 21st May. [Google Scholar]
  • McMullan, J. (2004) Fossil Fuel Power Generation: State of the Art. Report prepared by PowerClean R, D&D Thematic Network, European Commission Contract No. ENK5-CT-2002-20625, July. [Google Scholar]
  • Mimura, T.,Shimojo, S.,Suda, T.,Iijima, M. and Mitsuoka, S. (1995) Research and Development on Energy Saving Technology for Flue Gas Carbon Dioxide Recovery and Steam System in Power Plant. Energy Convers. Mgmt., 36, 6-9, 397-400. [CrossRef] [MathSciNet] [Google Scholar]
  • Mimura, T.,Simayoshi, H.,Suda, T.,Iijima, M. and Mitsuoka, S. (1997) Development of Energy Saving Technology for Flue Gas Carbon Dioxide Recovery in Power Plant by Chemical Absorption Method and Steam System. Energy Convers. Mgmt., 38, S57-S62. [CrossRef] [Google Scholar]
  • Mimura, T., Satsumi, S., Iijima, M. and Mitsuoka, S. (1999) Development on Energy Saving Technology for Flue Gas Carbon Dioxide Recovery by the Chemical Absorption Method and Steam System in Power Plant, Greenhouse Gas Control Technologies. Riemer, P., Eliasson, B., Wokaun, A. (eds.), Elsevier Science, Ltd., Kidlington, United Kingdom, 71-76. [Google Scholar]
  • Mimura, T.K. Matsumoto, Iijima, M. and Mitsuoka, S. (2001) Development and Application of Flue Gas Carbon Dioxide Recovery Technology. Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies,Williams, D. et al. (eds), CSIRO publishing, Australia, 138-142. [Google Scholar]
  • Nsakala, Y.N., Marion, J., Bozzuto, C., Liljedahl, G., Palkes, M., Vogel, D., Gupta, J.C., Guha, M., Johnson, H. and Plasynski, S. (2001) Engineering Feasibility of CO2 Capture on an Existing US Coal-Fired Power Plant. Paper presented at First National Conference on Carbon Sequestration, Washington DS, May 15-17. [Google Scholar]
  • Okabe, K., Matsumija, N., Mano, H. and Teramoto, M. (2003) Development of CO2 Separation Membranes (1) Facilitated transport membrane, In Greenhouse Gas Control Technologies. [Google Scholar]
  • Gale, J. and Kaya, Y. (eds.), Elsevier Science, Ltd., Kidlington, United Kingdom, 1555-1558. [Google Scholar]
  • Quinn, R. and Laciak, D.V. (1997) Polyelectrolyte Membranes for Acid Gas Separations. Journal of Membrane Science, 131, 49-60. [CrossRef] [Google Scholar]
  • Sander, M.T. and Mariz, C.L. (1992) The Fluor Daniel® Econamine™ FG Process: Past Experience and Present Day Focus. Energy Convers. Mgmt, 33, 5-8, 341-348. [CrossRef] [MathSciNet] [Google Scholar]
  • Stamatelopoulos, G., Scheffknecht, G. and Sadlon, E.S. (2003) Supercritical Boilers and Powerplants: Experience and Perspectives, Presented at PowerGen Europe 2003, Dusseldorf, Germany. [Google Scholar]
  • Teramoto, M.,Nakai, K.,Ohnishi, N.,Huang, Q.,Watari, T. and Matsuyama, H. (1996) Facilitated Transport of Carbon Dioxide through Supported Liquid Membranes of Aqueous Amine Solutions. Ind. Eng. Chem., 35, 538-545. [CrossRef] [Google Scholar]
  • Van der Sluijs, J.P.,Hendriks, C.A. and Blok, K. (1992) Feasibility of Polymer Membranes for Carbon Dioxide Recovery from Flue Gases. Energy Convers. Mgmt., 33, 5-8, 429-436. [CrossRef] [Google Scholar]
  • Yamamoto, K., Kajigaya, I. and Umaki, H. (2003) Operational Experience of USC Steam Condition Plant and PFBC Combined Cycle System with Material Performance, Materials at High Temperatures, Volume 20, Number 1. [Google Scholar]
  • Zheng, X.Y., Diao, Y.F., He, B.S., Chen, C.H., Xu, X.C. and Feng, W. (2002) Carbon Dioxide Recovery from Flue Gases by Ammonia Scrubbing. Proceedings of Papers for Sixth International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan, Oct. 1, Session No. I4-5. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.